12 research outputs found

    Clinical implementation of a 3D4K-exoscope (Orbeye) in microneurosurgery

    Get PDF
    Exoscopic surgery promises alleviation of physical strain, improved intraoperative visualization and facilitation of the clinical workflow. In this prospective observational study, we investigate the clinical usability of a novel 3D4K-exoscope in routine neurosurgical interventions. Questionnaires on the use of the exoscope were carried out. Exemplary cases were additionally video-documented. All participating neurosurgeons (n = 10) received initial device training. Changing to a conventional microscope was possible at all times. A linear mixed model was used to analyse the impact of time on the switchover rate. For further analysis, we dichotomized the surgeons in a frequent (n = 1) and an infrequent (n = 9) user group. A one-sample Wilcoxon signed rank test was used to evaluate, if the number of surgeries differed between the two groups. Thirty-nine operations were included. No intraoperative complications occurred. In 69.2% of the procedures, the surgeon switched to the conventional microscope. While during the first half of the study the conversion rate was 90%, it decreased to 52.6% in the second half (p = 0.003). The number of interventions between the frequent and the infrequent user group differed significantly (p = 0.007). Main reasons for switching to ocular-based surgery were impaired hand-eye coordination and poor depth perception. The exoscope investigated in this study can be easily integrated in established neurosurgical workflows. Surgical ergonomics improved compared to standard microsurgical setups. Excellent image quality and precise control of the camera added to overall user satisfaction. For experienced surgeons, the incentive to switch from ocular-based to exoscopic surgery greatly varies

    The Barrow Neurological Institute Scale Revisited: Predictive Capabilities for Cerebral Infarction and Clinical Outcome in Patients With Aneurysmal Subarachnoid Hemorrhage

    No full text
    BACKGROUND: In 2012, a new computed tomography (CT) grading scale was introduced by the Barrow Neurological Institute group ("BNI scale") to predict angiographic and symptomatic vasospasm in aneurysmal subarachnoid hemorrhage. OBJECTIVE: To address the question of whether BNI grading is reliable in the prediction of cerebral infarction and clinical outcome and to compare BNI scores to existing radiographic and clinical models of outcome prediction. METHODS: Consecutive data of 260 patients with aneurysmal subarachnoid hemorrhage was retrospectively analyzed with respect to radiographic and clinical parameters. RESULTS: Patients presenting with more severe BNI grades were older ( P = .002), displayed lower Glasgow Coma Scale scores at admission ( P < .001) and were more often diagnosed with intraventricular hemorrhage ( P < .001). An increasing BNI grade was associated with higher rates of severe angiographic vasospasm ( P = .007), the occurrence of new cerebral infarction ( P < .001), and poor patient outcome ( P < .001). In contrast, analysis according to the Fisher grading system did not show a significant relationship to any outcome parameter. Multivariate analysis combining radiographic and clinical parameters showed significant results for clinical scores (Hunt and Hess and World Federation of Neurosurgical Societies) with radiographic information losing its predictive capability. CONCLUSION: The BNI scale is easily applicable and superior to the original Fisher scale regarding prediction of angiographic vasospasm, new cerebral infarction, and patient outcome. Presence of intraventricular hemorrhage and intracerebral hemorrhage are additional radiographic factors with outcome relevance that are not part of the BNI scale. Established clinical scores like World Federation of Neurosurgical Societies and Hunt and Hess grading were more relevant for outcome prediction than any radiographic information

    A novel score to predict shunt dependency after aneurysmal subarachnoid hemorrhage

    No full text
    OBJECTIVE Feasible clinical scores for predicting shunt-dependent hydrocephalus (SDHC) after aneurysmal subarachnoid hemorrhage (aSAH) are scarce. The chronic hydrocephalus ensuing from SAH score (CHESS) was introduced in 2015 and has a high predictive value for SDHC. Although this score is easy to calculate, several early clinical and radiological factors are required. The authors designed the retrospective analysis described here for external CHESS validation and determination of predictive values for the radiographic Barrow Neurological Institute (BNI) scoring system and a new simplified combined scoring system. METHODS Consecutive data of 314 patients with aSAH were retrospectively analyzed with respect to CHESS parameters and BNI score. A new score, the shunt dependency in aSAH (SDASH) score, was calculated from independent risk factors identified with multivariate analysis. RESULTS Two hundred twenty-five patients survived the initial phase after the hemorrhage, and 27.1% of these patients developed SDHC. The SDASH score was developed from results of multivariate analysis, which revealed acute hydrocephalus (aHP), a BNI score of ≥ 3, and a Hunt and Hess (HH) grade of ≥ 4 to be independent risk factors for SDHC (ORs 5.709 [aHP], 6.804 [BNI], and 4.122 [HH]; p < 0.001). All 3 SDHC scores tested (CHESS, BNI, and SDASH) reliably predicted chronic hydrocephalus (ORs 1.533 [CHESS], 2.021 [BNI], and 2.496 [SDASH]; p ≤ 0.001). Areas under the receiver operating curve (AUROC) for CHESS and SDASH were comparable (0.769 vs 0.785, respectively; p = 0.447), but the CHESS and SDASH scores were superior to the BNI grading system for predicting SDHC (BNI AUROC 0.649; p = 0.014 and 0.001, respectively). In contrast to CHESS and BNI scores, an increase in the SDASH score coincided with a monotonous increase in the risk of developing SDHC. CONCLUSIONS The newly developed SDASH score is a reliable tool for predicting SDHC. It contains fewer factors and is more intuitive than existing scores that were shown to predict SDHC. A prospective score evaluation is needed

    Outcome prediction in aneurysmal subarachnoid hemorrhage: a comparison of machine learning methods and established clinico-radiological scores

    No full text
    Reliable prediction of outcomes of aneurysmal subarachnoid hemorrhage (aSAH) based on factors available at patient admission may support responsible allocation of resources as well as treatment decisions. Radiographic and clinical scoring systems may help clinicians estimate disease severity, but their predictive value is limited, especially in devising treatment strategies. In this study, we aimed to examine whether a machine learning (ML) approach using variables available on admission may improve outcome prediction in aSAH compared to established scoring systems. Combined clinical and radiographic features as well as standard scores (Hunt &amp;amp; Hess, WFNS, BNI, Fisher, and VASOGRADE) available on patient admission were analyzed using a consecutive single-center database of patients that presented with aSAH (n = 388). Different ML models (seven algorithms including three types of traditional generalized linear models, as well as a tree bosting algorithm, a support vector machine classifier (SVMC), a Naive Bayes (NB) classifier, and a multilayer perceptron (MLP) artificial neural net) were trained for single features, scores, and combined features with a random split into training and test sets (4:1 ratio), ten-fold cross-validation, and 50 shuffles. For combined features, feature importance was calculated. There was no difference in performance between traditional and other ML applications using traditional clinico-radiographic features. Also, no relevant difference was identified between a combined set of clinico-radiological features available on admission (highest AUC 0.78, tree boosting) and the best performing clinical score GCS (highest AUC 0.76, tree boosting). GCS and age were the most important variables for the feature combination. In this cohort of patients with aSAH, the performance of functional outcome prediction by machine learning techniques was comparable to traditional methods and established clinical scores. Future work is necessary to examine input variables other than traditional clinico-radiographic features and to evaluate whether a higher performance for outcome prediction in aSAH can be achieved

    Initial pupil status is a strong predictor for in-hospital mortality after aneurysmal subarachnoid hemorrhage

    No full text
    Prognosis of patients with high-grade aneurysmal subarachnoid hemorrhage (aSAH) is only insufficiently displayed by current standard prognostic scores. This study aims to evaluate the role of pupil status for mortality prediction and provide improved prognostic models. Anonymized data of 477 aSAH patients admitted to our medical center from November 2010 to August 2018 were retrospectively analyzed. Identification of variables independently predicting in-hospital mortality was performed by multivariable logistic regression analysis. Final regression models included Hunt & Hess scale (H&H), pupil status and age or in a simplified variation only H&H and pupil status, leading to the design of novel H&H-Pupil-Age score (HHPA) and simplified H&H-Pupil score (sHHP), respectively. In an external validation cohort of 402 patients, areas under the receiver operating characteristic curves (AUROC) of HHPA (0.841) and sHHP (0.821) were significantly higher than areas of H&H (0.794; p<0.001) or World Federation of Neurosurgical Societies (WFNS) scale (0.775; p<0.01). Accordingly, including information about pupil status improves the predictive performance of prognostic scores for in-hospital mortality in patients with aSAH. HHPA and sHHP allow simple, early and detailed prognosis assessment while predictive performance remained strong in an external validation cohort suggesting adequate generalizability and low interrater variability

    Standard-sampling microdialysis and spreading depolarizations in patients with malignant hemispheric stroke

    No full text
    Spreading depolarizations (SD) occur in high frequency in patients with malignant hemispheric stroke (MHS). Experimentally, SDs cause marked increases in glutamate and lactate, whereas glucose decreases. Here, we studied extracellular brain glutamate, glucose, lactate, pyruvate and the lactate/pyruvate ratio in relationship to SDs after MHS. We inserted two microdialysis probes in peri-infarct tissue at 5 and 15 mm to the infarct in close proximity to a subdural electrode strip. During 2356.6 monitoring hours, electrocorticography (ECoG) revealed 697 SDs in 16 of 18 patients. Ninety-nine SDs in electrically active tissue (spreading depressions, SDd) were single (SDds) and 485 clustered (SDdc), whereas 10 SDs with at least one electrode in electrically inactive tissue (isoelectric SDs, SDi) were single (SDis) and 103 clustered (SDic). More SDs and a significant number of clustered SDs occurred during the first 36 h post-surgery when glutamate was significantly elevated (> 100 mu M). In a grouped analysis, we observed minor glutamate elevations with more than two SDs per hour. Glucose slightly decreased during SDic at 5 mm from the infarct. Directions of SD-related metabolic changes correspond to the experimental setting but the long sampling time of standard microdialysis precludes a more adequate account of the dynamics revealed by ECoG

    Post-COVID exercise intolerance is associated with capillary alterations and immune dysregulations in skeletal muscles

    No full text
    Abstract The SARS-CoV-2 pandemic not only resulted in millions of acute infections worldwide, but also in many cases of post-infectious syndromes, colloquially referred to as “long COVID”. Due to the heterogeneous nature of symptoms and scarcity of available tissue samples, little is known about the underlying mechanisms. We present an in-depth analysis of skeletal muscle biopsies obtained from eleven patients suffering from enduring fatigue and post-exertional malaise after an infection with SARS-CoV-2. Compared to two independent historical control cohorts, patients with post-COVID exertion intolerance had fewer capillaries, thicker capillary basement membranes and increased numbers of CD169+ macrophages. SARS-CoV-2 RNA could not be detected in the muscle tissues. In addition, complement system related proteins were more abundant in the serum of patients with PCS, matching observations on the transcriptomic level in the muscle tissue. We hypothesize that the initial viral infection may have caused immune-mediated structural changes of the microvasculature, potentially explaining the exercise-dependent fatigue and muscle pain. Graphical Abstrac

    Spreading depolarizations in ischaemia after subarachnoid haemorrhage, a diagnostic phase III study

    No full text
    Focal brain damage after aneurysmal subarachnoid haemorrhage predominantly results from intracerebral haemorrhage, and early and delayed cerebral ischaemia. The prospective, observational, multicentre, cohort, diagnostic phase III trial, DISCHARGE-1, primarily investigated whether the peak total spreading depolarization-induced depression duration of a recording day during delayed neuromonitoring (delayed depression duration) indicates delayed ipsilateral infarction. Consecutive patients (n = 205) who required neurosurgery were enrolled in six university hospitals from September 2009 to April 2018. Subdural electrodes for electrocorticography were implanted. Participants were excluded on the basis of exclusion criteria, technical problems in data quality, missing neuroimages or patient withdrawal (n = 25). Evaluators were blinded to other measures. Longitudinal MRI, and CT studies if clinically indicated, revealed that 162/180 patients developed focal brain damage during the first 2 weeks. During 4.5 years of cumulative recording, 6777 spreading depolarizations occurred in 161/180 patients and 238 electrographic seizures in 14/180. Ten patients died early; 90/170 developed delayed infarction ipsilateral to the electrodes. Primary objective was to investigate whether a 60-min delayed depression duration cut-off in a 24-h window predicts delayed infarction with >0.60 sensitivity and >0.80 specificity, and to estimate a new cut-off. The 60-min cut-off was too short. Sensitivity was sufficient [= 0.76 (95% confidence interval: 0.65-0.84), P = 0.0014] but specificity was 0.59 (0.47-0.70), i.e. 0.60 sensitivity and >0.80 specificity. Although spontaneous resolution of the neurological deficit is still possible, we recommend initiating rescue treatment at the 60-min rather than the 180-min cut-off if progression of injury to infarction is to be prevented. Focal damage after subarachnoid haemorrhage results from intracerebral haemorrhage and cerebral ischaemia. In a prospective, observational, multicentre, diagnostic phase III trial, DISCHARGE-1, Dreier et al. examine whether monitoring cortical spreading depolarizations can predict delayed infarction-and thus poor outcomes

    Recording, analysis, and interpretation of spreading depolarizations in neurointensive care : review and recommendations of the COSBID research group

    No full text

    Recording, analysis, and interpretation of spreading depolarizations in neurointensive care : Review and recommendations of the COSBID research group

    No full text
    Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches
    corecore