752 research outputs found
The phase relation between sunspot numbers and soft X-ray flares
To better understand long-term flare activity, we present a statistical study
on soft X-ray flares from May 1976 to May 2008. It is found that the smoothed
monthly peak fluxes of C-class, M-class, and X-class flares have a very
noticeable time lag of 13, 8, and 8 months in cycle 21 respectively with
respect to the smoothed monthly sunspot numbers. There is no time lag between
the sunspot numbers and M-class flares in cycle 22. However, there is a
one-month time lag for C-class flares and a one-month time lead for X-class
flares with regard to sunspot numbers in cycle 22. For cycle 23, the smoothed
monthly peak fluxes of C-class, M-class, and X-class flares have a very
noticeable time lag of one month, 5 months, and 21 months respectively with
respect to sunspot numbers. If we take the three types of flares together, the
smoothed monthly peak fluxes of soft X-ray flares have a time lag of 9 months
in cycle 21, no time lag in cycle 22 and a characteristic time lag of 5 months
in cycle 23 with respect to the smoothed monthly sunspot numbers. Furthermore,
the correlation coefficients of the smoothed monthly peak fluxes of M-class and
X-class flares and the smoothed monthly sunspot numbers are higher in cycle 22
than those in cycles 21 and 23. The correlation coefficients between the three
kinds of soft X-ray flares in cycle 22 are higher than those in cycles 21 and
23. These findings may be instructive in predicting C-class, M-class, and
X-class flares regarding sunspot numbers in the next cycle and the physical
processes of energy storage and dissipation in the corona.Comment: 8 pages, 3 figures, Accepted for publication in Astrophysics & Space
Scienc
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
Partial wave analysis of J/\psi \to \gamma \phi \phi
Using events collected in the BESII detector, the
radiative decay is
studied. The invariant mass distribution exhibits a near-threshold
enhancement that peaks around 2.24 GeV/.
A partial wave analysis shows that the structure is dominated by a
state () with a mass of
GeV/ and a width of GeV/. The
product branching fraction is: .Comment: 11 pages, 4 figures. corrected proof for journa
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-
We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi -->
D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7
J/Psi events collected with the BESII detector at the BEPC. No excess of signal
above background is observed, and 90% confidence level upper limits on the
branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi
--> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
A study of charged kappa in
Based on events collected by BESII, the decay
is studied. In the invariant mass
spectrum recoiling against the charged , the charged
particle is found as a low mass enhancement. If a Breit-Wigner function of
constant width is used to parameterize the kappa, its pole locates at MeV/. Also in this channel,
the decay is observed for the first time.
Its branching ratio is .Comment: 14 pages, 4 figure
Measurements of psi(2S) decays to octet baryon-antibaryon pairs
With a sample of 14 million psi(2S) events collected by the BESII detector at
the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p
p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their
branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4,
(3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4,
respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter
alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure
- …