5,656 research outputs found
Analytical Solution of Electron Spin Decoherence Through Hyperfine Interaction in a Quantum Dot
We analytically solve the {\it Non-Markovian} single electron spin dynamics
due to hyperfine interaction with surrounding nuclei in a quantum dot. We use
the equation-of-motion method assisted with a large field expansion, and find
that virtual nuclear spin flip-flops mediated by the electron contribute
significantly to a complete decoherence of transverse electron spin correlation
function. Our results show that a 90% nuclear polarization can enhance the
electron spin time by almost two orders of magnitude. In the long time
limit, the electron spin correlation function has a non-exponential
decay in the presence of both polarized and unpolarized nuclei.Comment: 4 pages, 3 figure
A large sample of low surface brightness disk galaxies from the SDSS. I: The sample and the stellar populations
We present the properties of a large sample (12,282) of nearly face-on low
surface brightness (LSB) disk galaxies selected from the main galaxy sample of
SDSS-DR4. These properties include B-band central surface brightness mu_0(B),
scale lengths h, integrated magnitudes, colors, and distances D. This sample
has mu_0(B) values from 22 to 24.5 mag arcsec^{-2} with a median value of 22.42
mag arcsec^{-2}, and disk scale lengths ranging from 2 to 19 kpc. They are
quite bright with M_B taking values from -18 to -23 mag with a median value of
-20.08 mag. There exist clear correlations between logh and M_B, logh and logD,
logD and M_B. However, no obvious correlations are found between mu_0(B) and
logh, colors etc. The correlation between colors and logh is weak even though
it exists. Both the optical-optical and optical-NIR color-color diagrams
indicate that most of them have a mixture of young and old stellar populations.
They also satisfy color-magnitude relations, which indicate that brighter
galaxies tend generally to be redder. The comparison between the LSBGs and a
control sample of nearly face-on disk galaxies with higher surface brightness
(HSB) with mu_0(B) from 18.5 to 22 mag arcsec^{-2} show that, at a given
luminosity or distance, the observed LSB galaxies tend to have larger scale
lengths. These trends could be seen gradually by dividing both the LSBGs and
HSBGs into two sub-groups according to surface brightness. A volume-limited
sub-sample was extracted to check the incompleteness of surface brightness. The
only one of the property relations having an obvious change is the relation of
logh versus mu_0(B), which shows a correlation in this sub-sample.Comment: 14 pages, 18 figures, accepted for publication in MNRA
Artificial Intelligence-based Technique for Fault Detection and Diagnosis of EV Motors: A Review
The motor drive system plays a significant role in the safety of electric vehicles as a bridge for power transmission. Meanwhile, to enhance the efficiency and stability of the drive system, more and more studies based on AI technology are devoted to the fault detection and diagnosis of the motor drive system. This paper reviews the application of AI techniques in motor fault detection and diagnosis in recent years. AI-based FDD is divided into two main steps: feature extraction and fault classification. The application of different signal processing methods in feature extraction is discussed. In particular, the application of traditional machine learning and deep learning algorithms for fault classification is presented in detail. In addition, the characteristics of all techniques reviewed are summarized. Finally, the latest developments, research gaps and future challenges in fault monitoring and diagnosis of motor faults are discussed
Direct Measurements of the Branching Fractions for Inclusive and Inclusive Semileptonic Decays of and Mesons
With singly-tagged samples selected from the data collected at and
around 3.773 GeV with the BESII detector at the BEPC collider, we have measured
the branching fractions for the inclusive decays of and
mesons, which are , , and
, respectively. We have also
measured the branching fractions for the inclusive semileptonic decays of
and mesons to be and . These yield the ratio of their partial
widths to be .Comment: 6 pages, 5 figure
Search for D to phi l nu and measurement of the branching fraction for D to phi pi
Using a data sample of integrated luminosity of about 33 pb collected
around 3.773 GeV with the BESII detector at the BEPC collider, the semileptonic
decays , and the hadronic
decay are studied. The upper limits of the branching
fractions are set to be 2.01% and 2.04% at the 90% confidence level. The ratio of the
branching fractions for relative to is measured to be . In addition, the
branching fraction for is obtained to be .Comment: 6 pages, 5 figures, to be published in Eur.Phys.J.
Identification of an intraocular microbiota
The current dogma in ophthalmology and vision research presumes the intraocular environment to be sterile. However, recent evidence of intestinal bacterial translocation into the bloodstream and many other internal organs including the eyes, found in healthy and diseased animal models, suggests that the intraocular cavity may also be inhabited by a microbial community. Here, we tested intraocular samples from over 1000 human eyes. Using quantitative PCR, negative staining transmission electron microscopy, direct culture, and high-throughput sequencing technologies, we demonstrated the presence of intraocular bacteria. The possibility that the microbiome from these low-biomass communities could be a contamination from other tissues and reagents was carefully evaluated and excluded. We also provide preliminary evidence that a disease-specific microbial signature characterized the intraocular environment of patients with age-related macular degeneration and glaucoma, suggesting that either spontaneous or pathogenic bacterial translocation may be associated with these common sight-threatening conditions. Furthermore, we revealed the presence of an intraocular microbiome in normal eyes from non-human mammals and demonstrated that this varied across species (rat, rabbit, pig, and macaque) and was established after birth. These findings represent the first-ever evidence of intraocular microbiota in humans
Measurements of branching fractions for inclusive K0~/K0 and K*(892)+- decays of neutral and charged D mesons
Using the data sample of about 33 pb-1 collected at and around 3.773 GeV with
the BES-II detector at the BEPC collider, we have studied inclusive K0~/K0 and
K*(892)+- decays of D0 and D+ mesons. The branching fractions for the inclusive
K0~/K0 and K*(892)- decays are measured to be BF(D0 to K0~/K0
X)=(47.6+-4.8+-3.0)%, BF(D+ to K0~/K0 X)=(60.5+-5.5+-3.3)%, BF(D0 to K*-
X)=(15.3+- 8.3+- 1.9)% and BF(D+ to K*- X)=(5.7+- 5.2+- 0.7)%. The upper limits
of the branching fractions for the inclusive K*(892)+ decays are set to be
BF(D0 to K*+ X)<3.6% and BF(D+ to K*+ X) <20.3% at 90% confidence level
Synthesis of Mesoporous Silica@Co–Al Layered Double Hydroxide Spheres: Layer-by-Layer Method and Their Effects on the Flame Retardancy of Epoxy Resins
Hierarchical mesoporous silica@Co–Al layered double hydroxide (m-SiO2@Co–Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co–Al LDH, the synthetic m-SiO2@Co–Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co–Al LDH nanosheets. Subsequently, the m-SiO2@Co–Al LDH spheres were incorporated into epoxy resin (EP) to prepare specimens for investigation of their flame-retardant performance. Cone results indicated that m-SiO2@Co–Al LDH incorporated obviously improved fire retardant of EP. A plausible mechanism of fire retardant was hypothesized based on the analyses of thermal conductivity, char residues, and pyrolysis fragments. Labyrinth effect of m-SiO2 and formation of graphitized carbon char catalyzed by Co–Al LDH play pivotal roles in the flame retardance enhancement
- …