190 research outputs found
Influence of Cr adhesion layer on detection of amyloid-derived diffusible ligands based on localized surface plasmon resonance
A Cr adhesion layer inserted between Ag nanoparticles and a glass substrate, for the purpose of improving the adhesion of Ag nanoparticles to glass, was observed to cause an abnormal peak shift of extinction spectra in non-specific reactions. The undesired peak shift misleads molecule detection in non-specific reactions. To solve this issue, a practical technique using n-propyl-trimethoxysilane-based passivation for the detection of amyloid-derived diffusible ligands was investigated as a route to eliminate the abnormal peak shifting observed in the non-specific reactions. To evaluate this passivation technique, localized surface plasmon resonance immunoassay experiments were conducted. Experimental results derived with and without the passivation process were investigated as a basis for comparative analysis. Our experimental results demonstrate that this passivation technique effectively eliminates the observed peak shift originating from the Cr adhesion layer. Ā© 2009 Springer Science+Business Media, LLC
A Comparison of Image Denoising Methods
The advancement of imaging devices and countless images generated everyday
pose an increasingly high demand on image denoising, which still remains a
challenging task in terms of both effectiveness and efficiency. To improve
denoising quality, numerous denoising techniques and approaches have been
proposed in the past decades, including different transforms, regularization
terms, algebraic representations and especially advanced deep neural network
(DNN) architectures. Despite their sophistication, many methods may fail to
achieve desirable results for simultaneous noise removal and fine detail
preservation. In this paper, to investigate the applicability of existing
denoising techniques, we compare a variety of denoising methods on both
synthetic and real-world datasets for different applications. We also introduce
a new dataset for benchmarking, and the evaluations are performed from four
different perspectives including quantitative metrics, visual effects, human
ratings and computational cost. Our experiments demonstrate: (i) the
effectiveness and efficiency of representative traditional denoisers for
various denoising tasks, (ii) a simple matrix-based algorithm may be able to
produce similar results compared with its tensor counterparts, and (iii) the
notable achievements of DNN models, which exhibit impressive generalization
ability and show state-of-the-art performance on various datasets. In spite of
the progress in recent years, we discuss shortcomings and possible extensions
of existing techniques. Datasets, code and results are made publicly available
and will be continuously updated at
https://github.com/ZhaomingKong/Denoising-Comparison.Comment: In this paper, we intend to collect and compare various denoising
methods to investigate their effectiveness, efficiency, applicability and
generalization ability with both synthetic and real-world experiment
Novel insights: crosstalk with non-puerperal mastitis and immunity
The two primary types of non-puerperal mastitis (NPM) are granulomatous lobular mastitis (GLM) and plasma cell mastitis (PCM). Existing research indicates that immune inflammatory response is considered to be the core of the pathogenesis of GLM and PCM, and both innate and adaptive immune responses play an important role in the pathophysiology of PCM and GLM. However, the regulatory balance between various immune cells in these diseases is still unclear. Consequently, we present a comprehensive summary of the immune-related variables and recent advances in GLM and PCM
QoS-Aware and Load-Balance Routing for IEEE 802.11s Based Neighborhood Area Network in Smart Grid
Monitoring and transforming smart grid (SG) assets in a timely manner is highly desired for emerging smart grid applications. This critically requires the design of a neighborhood area network (NAN) which is capable of providing high-efficiency and reliable two-way last mile communication from meters to other SG domains. For this demand, IEEE 802.11s based wireless mesh network (WMN) is anticipated to be utilized in a NAN as it can provide high scalability, high-speed and cost-effective wireless transmission. In this paper, we propose a NAN QoS-aware and load-balance routing scheme (NQA-LB) based on the default hybrid wireless mesh protocol (HWMP) of IEEE 802.11s, which aims to address multiple QoS requirements from different NAN applications, and guarantee the highly reliability transfer of NAN traffic data towards gateway. With the NQA-LB, various QoS requirements can be satisfied through sufficient differentiated services as well as network congestion is mitigated by achieving load balance between multiple transmission paths. In order to improve the reliability of NQA-LB, we present an EDCA based adaptive priority adjustment scheme, called AP-EDCA, which dynamically adjusts packetās priority to increase the throughput under low load condition and to mitigate the collision under heavy load condition to improve the reliability of applications with high QoS requirements. Extensive simulation experiments demonstrate the superiority of the proposed scheme in terms of packet delivery ratio, end-to-end delay and throughput while satisfies various QoS requirements much better at the same time
Gene Clusters Located on Two Large Plasmids Determine Spore Crystal Association (SCA) in Bacillus thuringiensis Subsp. finitimus Strain YBT-020
Crystals in Bacillus thuringiensis are usually formed in the mother cell compartment during sporulation and are separated from the spores after mother cell lysis. In a few strains, crystals are produced inside the exosporium and are associated with the spores after sporulation. This special phenotype, named āspore crystal associationā (SCA), typically occurs in B. thuringiensis subsp. finitimus. Our aim was to identify genes determining the SCA phenotype in B. thuringiensis subsp. finitimus strain YBT-020. Plasmid conjugation experiments indicated that the SCA phenotype in this strain was tightly linked with two large plasmids (pBMB26 and pBMB28). A shuttle bacterial artificial chromosome (BAC) library of strain YBT-020 was constructed. Six fragments from BAC clones were screened from this library and discovered to cover the full length of pBMB26; four others were found to cover pBMB28. Using fragment complementation testing, two fragments, each of approximately 35 kb and located on pBMB26 and pBMB28, were observed to recover the SCA phenotype in an acrystalliferous mutant, B. thuringiensis strain BMB171. Furthermore, deletion analysis indicated that the crystal protein gene cry26Aa from pBMB26, along with five genes from pBMB28, were indispensable to the SCA phenotype. Gene disruption and frame-shift mutation analyses revealed that two of the five genes from pBMB28, which showed low similarity to crystal proteins, determined the location of crystals inside the exosporium. Gene disruption revealed that the three remaining genes, similar to spore germination genes, contributed to the stability of the SCA phenotype in strain YBT-020. Our results thus identified the genes determining the SCA phenotype in B. thuringiensis subsp. finitimus
High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth
The high-quality and low-cost of the graphene preparation method decide whether graphene is put into the applications finally. Enormous efforts have been devoted to understand and optimize the CVD process of graphene over various d-block transition metals (e.g. Cu, Ni and Pt). Here we report the growth of uniform high-quality single-layer, single-crystalline graphene flakes and their continuous films over p-block elements (e.g. Ga) liquid films using ambient-pressure chemical vapor deposition. The graphene shows high crystalline quality with electron mobility reaching levels as high as 7400ā
cm2 Vā1sā1 under ambient conditions. Our employed growth strategy is ultra-low-loss. Only trace amounts of Ga are consumed in the production and transfer of the graphene and expensive film deposition or vacuum systems are not needed. We believe that our research will open up new territory in the field of graphene growth and thus promote its practical application
Bibliometric analysis of global research trends between gut microbiota and breast cancer: from 2013 to 2023
BackgroundBreast cancer is the most prevalent cancer globally and is associated with significant mortality. Recent research has provided crucial insights into the role of gut microbiota in the onset and progression of breast cancer, confirming its impact on the diseaseās management. Despite numerous studies exploring this relationship, there is a lack of comprehensive bibliometric analyses to outline the fieldās current state and emerging trends. This study aims to fill that gap by analyzing key research directions and identifying emerging hotspots.MethodPublications from 2013 to 2023 were retrieved from the Web of Science Core Collection database. The VOSviewer, R language and SCImago Graphica software were utilized to analyze and visualize the volume of publications, countries/regions, institutions, authors, and keywords in this field.ResultsA total of 515 publications were included in this study. The journal Cancers was identified as the most prolific, contributing 21 papers. The United States and China were the leading contributors to this field. The University of Alabama at Birmingham was the most productive institution. Peter Bai published the most papers, while James J. Goedert was the most cited author. Analysis of highly cited literature and keyword clustering confirmed a close relationship between gut microbiota and breast cancer. Keywords such as āmetabolomicsā and āprobioticsā have been prominently highlighted in the keyword analysis, indicating future research hotspots in exploring the interaction between metabolites in the breast cancer microenvironment and gut microbiota. Additionally, these keywords suggest significant interest in the therapeutic potential of probiotics for breast cancer treatment.ConclusionResearch on the relationship between gut microbiota and breast cancer is expanding. Attention should be focused on understanding the mechanisms of their interaction, particularly the metabolite-microbiota-breast cancer crosstalk. These insights have the potential to advance prevention, diagnosis, and treatment strategies for breast cancer. This bibliometric study provides a comprehensive assessment of the current state and future trends of research in this field, offering valuable perspectives for future studies on gut microbiota and breast cancer
Characterization of genome-wide H3K27ac profiles reveals a distinct PM2.5-associated histone modification signature
Complete list of differentially modified H3K27ac loci. (XLSX 69 kb
- ā¦