111 research outputs found
Delineating the biosynthesis of gentamicin x2, the common precursor of the gentamicin C antibiotic complex.
Gentamicin C complex is a mixture of aminoglycoside antibiotics used worldwide to treat severe Gram-negative bacterial infections. Despite its clinical importance, the enzymology of its biosynthetic pathway has remained obscure. We report here insights into the four enzyme-catalyzed steps that lead from the first-formed pseudotrisaccharide gentamicin A2 to gentamicin X2, the last common intermediate for all components of the C complex. We have used both targeted mutations of individual genes and reconstitution of portions of the pathway in vitro to show that the secondary alcohol function at C-3″ of A2 is first converted to an amine, catalyzed by the tandem operation of oxidoreductase GenD2 and transaminase GenS2. The amine is then specifically methylated by the S-adenosyl-l-methionine (SAM)-dependent N-methyltransferase GenN to form gentamicin A. Finally, C-methylation at C-4″ to form gentamicin X2 is catalyzed by the radical SAM-dependent and cobalamin-dependent enzyme GenD1.This work was supported by a project grant from the Medical Research
Council, UK (G1001687) to P.F.L.; and by the 973 and 863 programs from
the Ministry of Science and Technology of China, National Science Foundation
of China, and the Translational Medical Research Fund of Wuhan University
School of Medicine to Y.S.; E.M. thanks the Gates Cambridge Trust for a
scholarship. We also gratefully acknowledge Dr. Xinzhou Yang, SouthCentral
University for Nationalities, for his assistance in separation of gentamicin
A2. We thank Dr. Andrew Truman (John Innes Institute) for helpful
discussions.This is the final published version. It was originally published in Chemistry and Biology, Volume 22, Issue 2, 19 February 2015, Pages 251–261, doi:10.1016/j.chembiol.2014.12.01
Investigation of the process energy demand in polymer extrusion: A brief review and an experimental study
YesExtrusion is one of the fundamental production methods in the polymer processing industry and is used in the production of a large number of commodities in a diverse industrial sector. Being an energy intensive production method, process energy efficiency is one of the major concerns and the selection of the most energy efficient processing conditions is a key to reducing operating costs. Usually, extruders consume energy through the drive motor, barrel heaters, cooling fans, cooling water pumps, gear pumps, etc. Typically the drive motor is the largest energy consuming device in an extruder while barrel/die heaters are responsible for the second largest energy demand. This study is focused on investigating the total energy demand of an extrusion plant under various processing conditions while identifying ways to optimise the energy efficiency. Initially, a review was carried out on the monitoring and modelling of the energy consumption in polymer extrusion. Also, the power factor, energy demand and losses of a typical extrusion plant were discussed in detail. The mass throughput, total energy consumption and power factor of an extruder were experimentally observed over different processing conditions and the total extruder energy demand was modelled empirically and also using a commercially available extrusion simulation software. The experimental results show that extruder energy demand is heavily coupled between the machine, material and process parameters. The total power predicted by the simulation software exhibits a lagging offset compared with the experimental measurements. Empirical models are in good agreement with the experimental measurements and hence these can be used in studying process energy behaviour in detail and to identify ways to optimise the process energy efficiency
Process efficiency in polymer extrusion: Correlation between the energy demand and melt thermal stability
YesThermal stability is of major importance in polymer extrusion, where product quality is dependent upon the level of melt homogeneity achieved by the extruder screw. Extrusion is an energy intensive process and optimisation of process energy usage while maintaining melt stability is necessary in order to produce good quality product at low unit cost. Optimisation of process energy usage is timely as world energy prices have increased rapidly over the last few years. In the first part of this study, a general discussion was made on the efficiency of an extruder. Then, an attempt was made to explore correlations between melt thermal stability and energy demand in polymer extrusion under different process settings and screw geometries. A commodity grade of polystyrene was extruded using a highly instrumented single screw extruder, equipped with energy consumption and melt temperature field measurement. Moreover, the melt viscosity of the experimental material was observed by using an off-line rheometer. Results showed that specific energy demand of the extruder (i.e. energy for processing of unit mass of polymer) decreased with increasing throughput whilst fluctuation in energy demand also reduced. However, the relationship between melt temperature and extruder throughput was found to be complex, with temperature varying with radial position across the melt flow. Moreover, the melt thermal stability deteriorated as throughput was increased, meaning that a greater efficiency was achieved at the detriment of melt consistency. Extruder screw design also had a significant effect on the relationship between energy consumption and melt consistency. Overall, the relationship between the process energy demand and thermal stability seemed to be negatively correlated and also it was shown to be highly complex in nature. Moreover, the level of process understanding achieved here can help to inform selection of equipment and setting of operating conditions to optimise both energy and thermal efficiencies in parallel.This work was funded through an inter-disciplinary research programme (Grant No. EP/G059330/1) by the EPSRC-UK. The technical assistance provided by Ken Howell, Roy Dixon and John Wyborn is greatly appreciated
Molecular differentiated initiator reactivity in the synthesis of poly(caprolactone)-based hydrophobic homopolymer and amphiphilic core corona star polymers
Macromolecules that possess three-dimensional, branched molecular structures are of great interest because they exhibit significantly differentiated application performance compared to conventional linear (straight chain) polymers. This paper reports the synthesis of 3- and 4-arm star branched polymers via ring opening polymerisation (ROP) utilising multi-functional hydroxyl initiators and Sn(Oct)2 as precatalyst. The structures produced include mono-functional hydrophobic and multi-functional amphiphilic core corona stars. The characteristics of the synthetic process were shown to be principally dependent upon the physical/dielectric properties of the initiators used. ROP’s using initiators that were more available to become directly involved with the Sn(Oct)2 in the “in-situ” formation of the true catalytic species were observed to require shorter reaction times. Use of microwave heating (MWH) in homopolymer star synthesis reduced reaction times compared to conventional heating (CH) equivalents, this was attributed to an increased rate of “in-situ” catalyst formation. However, in amphiphilic core corona star formation, the MWH polymerisations exhibited slower propagation rates than CH equivalents. This was attributed to macro-structuring within the reaction medium, which reduced the potential for reaction. It was concluded that CH experiments were less affected by this macro-structuring because it was disrupted by the thermal currents/gradients caused by the conductive/convective heating mechanisms. These gradients are much reduced/absent with MWH because it selectively heats specific species simultaneously throughout the entire volume of the reaction medium. These partitioning problems were overcome by introducing additional quantities of the species that had been determined to selectively heat
Persistent Increase in Serum Ferritin Levels despite Converting to Permanent Vascular Access in Pediatric Hemodialysis Patients: Pediatric Nephrology Research Consortium Study
Our objective was to examine serum ferritin trends after conversion to permanent vascular access (PVA) among children who started hemodialysis (HD) using tunneled cuffed catheters (TCC). Retrospective chart reviews were completed on 98 subjects from 20 pediatric HD centers. Serum ferritin levels were collected at the creation of PVA and for two years thereafter. There were 11 (11%) arteriovenous grafts (AVG) and 87 (89%) arteriovenous fistulae (AVF). Their mean TCC use was 10.4 ± 17.3 months. Serum ferritin at PVA creation was elevated at 562.64 ± 492.34 ng/mL, increased to 753.84 ± 561.54 ng/mL (p = \u3c 0.001) in the first year and remained at 759.60 ± 528.11 ng/mL in the second year (p = 0.004). The serum ferritin levels did not show a statistically significant linear association with respective serum hematocrit values. In a multiple linear regression model, there were three predictors of serum ferritin during the first year of follow-up: steroid-resistant nephrotic syndrome as primary etiology (p = 0.035), being from a center that enrolled \u3e10 cases (p = 0.049) and baseline serum ferritin level (p = 0.017). Increasing serum ferritin after conversion to PVA is concerning. This increase is not associated with serum hematocrit trends. Future studies should investigate the correlation of serum transferrin saturation and ferritin levels in pediatric HD patients
Single-Cell Characterization of Pulmonary Nodules Implicates Suppression of Immunosurveillance across Early Stages of Lung Adenocarcinoma
UNLABELLED: A greater understanding of molecular, cellular, and immunological changes during the early stages of lung adenocarcinoma development could improve diagnostic and therapeutic approaches in patients with pulmonary nodules at risk for lung cancer. To elucidate the immunopathogenesis of early lung tumorigenesis, we evaluated surgically resected pulmonary nodules representing the spectrum of early lung adenocarcinoma as well as associated normal lung tissues using single-cell RNA sequencing and validated the results by flow cytometry and multiplex immunofluorescence (MIF). Single-cell transcriptomics revealed a significant decrease in gene expression associated with cytolytic activities of tumor-infiltrating natural killer and natural killer T cells. This was accompanied by a reduction in effector T cells and an increase of CD4+ regulatory T cells (Treg) in subsolid nodules. An independent set of resected pulmonary nodules consisting of both adenocarcinomas and associated premalignant lesions corroborated the early increment of Tregs in premalignant lesions compared with the associated normal lung tissues by MIF. Gene expression analysis indicated that cancer-associated alveolar type 2 cells and fibroblasts may contribute to the deregulation of the extracellular matrix, potentially affecting immune infiltration in subsolid nodules through ligand-receptor interactions. These findings suggest that there is a suppression of immune surveillance across the spectrum of early-stage lung adenocarcinoma.
SIGNIFICANCE: Analysis of a spectrum of subsolid pulmonary nodules by single-cell RNA sequencing provides insights into the immune regulation and cell-cell interactions in the tumor microenvironment during early lung tumor development
The use of complementary and alternative medicines among patients with locally advanced breast cancer – a descriptive study
BACKGROUND: Complementary and alternative medicine (CAM) use is common among cancer patients. This paper reviews the use of CAM in a series of patients with locally advanced breast cancer (LABC). METHODS: Women with LABC attending a specialist clinic at a single Canadian cancer centre were identified and approached. Participants completed a self-administered survey regarding CAM usage, beliefs associated with CAM usage, views of their risks of developing recurrent cancer and of dying of breast cancer. Responses were scored and compared between CAM users and non-users. RESULTS: Thirty-six patients were approached, 32 completed the questionnaire (response rate 89%). Forty-seven percent of LABC patients were identified as CAM users. CAM users were more likely to be younger, married, in a higher socioeconomic class and of Asian ethnicity than non-users. CAM users were likely to use multiple modalities simultaneously (median 4) with vitamins being the most popular (60%). Motivation for CAM therapy was described as, "assisting their body to heal" (75%), to 'boost the immune system' (56%) and to "give a feeling of control with respect to their treatment" (56%). CAM therapy was used concurrently with conventional treatment in 88% of cases, however, 12% of patients felt that CAM could replace their conventional therapy. Psychological evaluation suggests CAM users perceived their risk of dying of breast cancer was similar to that of the non-Cam group (33% vs. 35%), however the CAM group had less severe anxiety and depression. CONCLUSION: The motivation, objectives and benefits of CAM therapy in a selected population of women with LABC are similar to those reported for women diagnosed with early stage breast cancer. CAM users display less anxiety and depression and are less likely to believe they will die of their breast cancer. However the actual benefit to overall and disease free survival has yet to be demonstrated, as well as the possible interactions with conventional therapy. Consequently more research is needed in this ever-growing field
FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration
Through an international consortium, we have collected 37 tau- and TAR DNA-binding protein 43 (TDP-43)-negative frontotemporal lobar degeneration (FTLD) cases, and present here the first comprehensive analysis of these cases in terms of neuropathology, genetics, demographics and clinical data. 92% (34/37) had fused in sarcoma (FUS) protein pathology, indicating that FTLD-FUS is an important FTLD subtype. This FTLD-FUS collection specifically focussed on aFTLD-U cases, one of three recently defined subtypes of FTLD-FUS. The aFTLD-U subtype of FTLD-FUS is characterised clinically by behavioural variant frontotemporal dementia (bvFTD) and has a particularly young age of onset with a mean of 41 years. Further, this subtype had a high prevalence of psychotic symptoms (36% of cases) and low prevalence of motor symptoms (3% of cases). We did not find FUS mutations in any aFTLD-U case. To date, the only subtype of cases reported to have ubiquitin-positive but tau-, TDP-43- and FUS-negative pathology, termed FTLD-UPS, is the result of charged multivesicular body protein 2B gene (CHMP2B) mutation. We identified three FTLD-UPS cases, which are negative for CHMP2B mutation, suggesting that the full complement of FTLD pathologies is yet to be elucidated
- …