95 research outputs found

    The star from Japan

    Get PDF

    A standing Leidenfrost drop with Sufi-whirling

    Full text link
    The mobility of Leidenfrost drop has been exploited for the manipulation of drop motions. In the classical model, the Leidenfrost drop was levitated by a vapor cushion, in the absence of touch to the surface. Here we report a standing Leidenfrost state on a heated hydrophobic surface where drop stands on the surface with partial adhesion and further self-rotates like Sufi-whirling. To elucidate this new phenomenon, we imaged the evolution of the partial adhesion, the inner circulation, and the ellipsoidal rotation of the drop. The stable partial adhesion is accompanied by thermal and mechanical equilibrium, and further drives the development of the drop rotation.Comment: 16 pages, 4 figure

    Printing surface charge as a new paradigm to program droplet transport

    Full text link
    Directed, long-range and self-propelled transport of droplets on solid surfaces, especially on water repellent surfaces, is crucial for many applications from water harvesting to bio-analytical devices. One appealing strategy to achieve the preferential transport is to passively control the surface wetting gradients, topological or chemical, to break the asymmetric contact line and overcome the resistance force. Despite extensive progress, the directional droplet transport is limited to small transport velocity and short transport distance due to the fundamental trade-off: rapid transport of droplet demands a large wetting gradient, whereas long-range transport necessitates a relatively small wetting gradient. Here, we report a radically new strategy that resolves the bottleneck through the creation of an unexplored gradient in surface charge density (SCD). By leveraging on a facile droplet printing on superamphiphobic surfaces as well as the fundamental understanding of the mechanisms underpinning the creation of the preferential SCD, we demonstrate the self-propulsion of droplets with a record-high velocity over an ultra-long distance without the need for additional energy input. Such a Leidenfrost-like droplet transport, manifested at ambient condition, is also genetic, which can occur on a variety of substrates such as flexible and vertically placed surfaces. Moreover, distinct from conventional physical and chemical gradients, the new dimension of gradient in SCD can be programmed in a rewritable fashion. We envision that our work enriches and extends our capability in the manipulation of droplet transport and would find numerous potential applications otherwise impossible.Comment: 11 pages, 4 figure

    Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide.

    Get PDF
    Conversion of carbon monoxide to high value-added ethylene with high selectivity by traditional syngas conversion process is challenging because of the limitation of Anderson-Schulz-Flory distribution. Herein we report a direct electrocatalytic process for highly selective ethylene production from CO reduction with water over Cu catalysts at room temperature and ambient pressure. An unprecedented 52.7 % Faradaic efficiency of ethylene formation is achieved through optimization of cathode structure to facilitate CO diffusion at the surface of the electrode and Cu catalysts to enhance the C-C bond coupling. The highly selective ethylene production is almost without other carbon-based byproducts (e.g. C1 -C4 hydrocarbons and CO2 ) and avoids the drawbacks of the traditional Fischer-Tropsch process that always delivers undesired products. This study provides a new and promising strategy for highly selective production of ethylene from the abundant industrial CO

    Lycium barbarum Polysaccharides Attenuate Cisplatin-Induced Hair Cell Loss in Rat Cochlear Organotypic Cultures

    Get PDF
    The aim of the present study was to investigate the effects of Lycium barbarum polysaccharides (LBP) on cisplatin-induced hair cell damage in the organ of Corti explant. The neonatal (P2–3) rat organ of Corti explant was exposed to cisplatin (20 μM; 48 h) with or without LBP pretreatment (150 and 600 μg/mL; 24 h). Hair cell loss was indicated by FITC-labeled phalloidin staining. The level of reactive oxygen species (ROS) and alteration of mitochondrial membrane potential (ΔΨm) in hair cells were analyzed using fluorescent probes 2′,7′-dichlorofluorescein diacetate and JC-1, respectively. The results showed that LBP significantly attenuated hair cell loss (p < 0.01). Hair cells pretreated with LBP showed significant reduction in ROS production and the decline of ΔΨm compared with cisplatin alone group (p < 0.01), indicating the protective effect of LBP on cisplatin-induced hair cell loss. Taken together, these results indicate that LBP was effective in attenuating cisplatin-induced hair cell loss by reducing the production of ROS and maintaining mitochondrial ΔΨm

    Room-temperature conversion of ethane and the mechanism understanding over single iron atoms confined in graphene

    Get PDF
    Abstract(#br)The catalytic conversion of ethane to high value-added chemicals is significantly important for utilization of hydrocarbon resources. However, it is a great challenge due to the typically required high temperature (> 400 °C) conditions. Herein, a highly active catalytic conversion process of ethane at room temperature (25 °C) is reported on single iron atoms confined in graphene via the porphyrin-like N 4 -coordination structures. Combining with the operando time of flight mass spectrometer and density functional theory calculations, the reaction is identified as a radical mechanism, in which the C–H bonds of the same C atom are preferentially and sequentially activated, generating the value-added C 2 chemicals, simultaneously avoiding the over-oxidation of the products to CO 2 . The in-situ formed O–FeN 4 –O structure at the single iron atom serves as the active center for the reaction and facilitates the formation of ethyl radicals. This work deepens the understanding of alkane C–H activation on the FeN 4 center and provides the reference in development of efficient catalyst for selective oxidation of light alkane

    Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective

    No full text
    Great endeavors are undertaken to search for low-cost, rich-reserve, and highly efficient alternatives to replace precious-metal catalysts, in order to cut costs and improve the efficiency of catalysts in industry. However, one major problem in metal catalysts, especially nonprecious-metal catalysts, is their poor stability in real catalytic processes. Recently, a novel and promising strategy to construct 2D materials encapsulating nonprecious-metal catalysts has exhibited inimitable advantages toward catalysis, especially under harsh conditions (e.g., strong acidity or alkalinity, high temperature, and high overpotential). The concept, which originates from unique electron penetration through the 2D crystal layer from the encapsulated metals to promote a catalytic reaction on the outermost surface of the 2D crystal, has been widely applied in a variety of reactions under harsh conditions. It has been vividly described as "chainmail for catalyst." Herein, recent progress concerning this chainmail catalyst is reviewed, particularly focusing on the structural design and control with the associated electronic properties of such heterostructure catalysts, and also on their extensive applications in fuel cells, water splitting, CO2 conversion, solar cells, metal-air batteries, and heterogeneous catalysis. In addition, the current challenges that are faced in fundamental research and industrial application, and future opportunities for these fantastic catalytic materials are discussed
    • …
    corecore