13 research outputs found

    Analysis of the Tribolium homeotic complex: insights into mechanisms constraining insect Hox clusters

    Get PDF
    The remarkable conservation of Hox clusters is an accepted but little understood principle of biology. Some organizational constraints have been identified for vertebrate Hox clusters, but most of these are thought to be recent innovations that may not apply to other organisms. Ironically, many model organisms have disrupted Hox clusters and may not be well-suited for studies of structural constraints. In contrast, the red flour beetle, Tribolium castaneum, which has a long history in Hox gene research, is thought to have a more ancestral-type Hox cluster organization. Here, we demonstrate that the Tribolium homeotic complex (HOMC) is indeed intact, with the individual Hox genes in the expected colinear arrangement and transcribed from the same strand. There is no evidence that the cluster has been invaded by non-Hox protein-coding genes, although expressed sequence tag and genome tiling data suggest that noncoding transcripts are prevalent. Finally, our analysis of several mutations affecting the Tribolium HOMC suggests that intermingling of enhancer elements with neighboring transcription units may constrain the structure of at least one region of the Tribolium cluster. This work lays a foundation for future studies of the Tribolium HOMC that may provide insights into the reasons for Hox cluster conservation

    Do teashirt family genes specify trunk identity? Insights from the single tiptop/teashirt homolog of Tribolium castaneum

    Get PDF
    The Drosophila teashirt gene acts in concert with the homeotic selector (Hox) genes to specify trunk (thorax and abdomen) identity. There has been speculation that this trunk-specifying function might be very ancient, dating back to the common ancestor of insects and vertebrates. However, other evidence suggests that the role of teashirt in trunk identity is not well conserved even within the Insecta. To address this issue, we have analyzed the function of Tc-tiotsh, the lone teashirt family member in the red flour beetle, Tribolium castaneum. Although Tc-tiotsh is important for aspects of both embryonic and imaginal development including some trunk features, we find no evidence that it acts as a trunk identity gene. We discuss this finding in the context of recent insights into the evolution and function of the Drosophila teashirt family genes

    Molecular Characterization of \u3ci\u3eCephalothorax,\u3c/i\u3e the \u3ci\u3eTribolium\u3c/i\u3e Ortholog of \u3ci\u3eSex Combs Reduced\u3c/i\u3e

    Get PDF
    Sex combs reduced (Scr), a Hox gene located in the Antennapedia complex of Drosophila melanogaster, is required for the proper development of the labial and first thoracic segments. The Tribolium castaneum genetically defined locus Cephalothorax (Cx) is a candidate Scr ortholog based on the location of Cx in the beetle Homeotic complex and mutant effects on the labial and first thoracic segments. To address this hypothesis, we have cloned and characterized the Tribolium ortholog of Scr (TcScr). The transcription unit is less complex and encodes a smaller protein than Scr. The predicted amino acid sequence of the Tribolium protein shares motifs with orthologous proteins from multiple species. In addition, we have analyzed the TcScr expression pattern during embryonic development. TcScr is expressed in parts of the maxillary, labial, and first thoracic segments in a pattern similar to but not identical to Scr. Furthermore, TcScr RNA interference results in a phenocopy of the Cephalothorax (Cx) mutant phenotype in which the labial palps are transformed into antennae and the head and first thoracic segment are fused. All of the available results indicate that Cx is the Tribolium ortholog of Scr

    The Tribolium castaneum

    No full text
    corecore