11 research outputs found

    Measurement of spectral functions of ultracold atoms in disordered potentials

    Full text link
    We report on the measurement of the spectral functions of noninteracting ultracold atoms in a three-dimensional disordered potential resulting from an optical speckle field. Varying the disorder strength by 2 orders of magnitude, we observe the crossover from the "quantum" perturbative regime of low disorder to the "classical" regime at higher disorder strength, and find an excellent agreement with numerical simulations. The method relies on the use of state-dependent disorder and the controlled transfer of atoms to create well-defined energy states. This opens new avenues for experimental investigations of three-dimensional Anderson localization

    Vers une étude spectroscopique de la transition d'Anderson

    No full text
    This manuscript summarizes the work of a thesis on Anderson's localization and transport of ultra-cold matter waves in disordered media. This is an experimental work aiming to study the Anderson transition separating the energy states of a quantum particle placed in a disordered potential into two phases: localized states and diffusive states.First, we will recall some fundamental concepts about wave localization and how such phenomenon is linked with some interference effects. Then, we will give a global description of the experimental set-up allowing to prepare the ultra-cold atomic samples used as a source of quantum matter waves, and to generate the speckle field used as disordered potential for the atoms.At the end of this introductory work, the concepts of localization introduced previously will be applied to the transport of cold atoms in a speckle field. A brief state of the art of cold-atom experiments dealing with the Anderson transition will allow us to set the limits of these works in terms of energy control on the atomic states. These limitations will then motivate the implementation of a new experimental "spectroscopic" method allowing a complete control of the energy of the atoms placed in disorder.The concept of spectral function will then be presented as a fundamental tool for characterizing energy states and for calibrating the energy reliability of the spectroscopic method. Finally, the experimental results on the measurement of spectral functions by this new spectroscopic method will show that it would be indeed possible to study the Anderson transition with a much higher energy resolution than the previous experiments.Ce mémoire résume les travaux d'une thèse portant sur le transport et la localisation d'Anderson d'ondes de matière ultra-froide en milieu désordonné. C'est un travail expérimental visant à l'étude de la transition d'Anderson séparant les états d'énergie d'une particule quantique placée dans un potentiel désordonné selon deux phases : des états localisés, et des états diffusifs.Dans un premier temps, on rappellera les concepts fondamentaux permettant de comprendre les effets de localisation des ondes, et notamment leur interprétation en terme d'interférences. Ensuite, on donnera une description globale du dispositif expérimental permettant de préparer les nuages d'atomes ultra-froids servant de source d'ondes quantiques de matière, et de générer la figure de tavelures optique (speckle en anglais) jouant le rôle de potentiel désordonné pour les atomes.A l'issue de ce travail introductif, les notions de localisation introduites précédemment seront appliquées au transport d'atomes froids dans un speckle. Un bref état de l'art des expériences d'atomes froids portant sur la transition d'Anderson permettra de dessiner les limites en terme de contrôle de l'énergie des états peuplés par les atomes. Ces limitations permettront alors de motiver la mise en place d'une nouvelle méthode expérimentale dite "spectroscopique" permettant un contrôle complet par un opérateur extérieur de l'énergie des atomes placés le désordre.Le concept de fonction spectrale sera alors présenté comme outil fondamental permettant de caractériser les états d'énergie et de calibrer la fiabilité en énergie de la méthode spectroscopique. Enfin, des résultats expérimentaux portant sur la mesure de fonctions spectrales par cette nouvelle méthode spectroscopique viendront attester qu'il serait effectivement possible d'étudier la transition d'Anderson avec une résolution en énergie bien supérieure aux expériences précédentes

    Towards a spectroscopic study of Anderson transition

    No full text
    Ce mémoire résume les travaux d'une thèse portant sur le transport et la localisation d'Anderson d'ondes de matière ultra-froide en milieu désordonné. C'est un travail expérimental visant à l'étude de la transition d'Anderson séparant les états d'énergie d'une particule quantique placée dans un potentiel désordonné selon deux phases : des états localisés, et des états diffusifs.Dans un premier temps, on rappellera les concepts fondamentaux permettant de comprendre les effets de localisation des ondes, et notamment leur interprétation en terme d'interférences. Ensuite, on donnera une description globale du dispositif expérimental permettant de préparer les nuages d'atomes ultra-froids servant de source d'ondes quantiques de matière, et de générer la figure de tavelures optique (speckle en anglais) jouant le rôle de potentiel désordonné pour les atomes.A l'issue de ce travail introductif, les notions de localisation introduites précédemment seront appliquées au transport d'atomes froids dans un speckle. Un bref état de l'art des expériences d'atomes froids portant sur la transition d'Anderson permettra de dessiner les limites en terme de contrôle de l'énergie des états peuplés par les atomes. Ces limitations permettront alors de motiver la mise en place d'une nouvelle méthode expérimentale dite "spectroscopique" permettant un contrôle complet par un opérateur extérieur de l'énergie des atomes placés le désordre.Le concept de fonction spectrale sera alors présenté comme outil fondamental permettant de caractériser les états d'énergie et de calibrer la fiabilité en énergie de la méthode spectroscopique. Enfin, des résultats expérimentaux portant sur la mesure de fonctions spectrales par cette nouvelle méthode spectroscopique viendront attester qu'il serait effectivement possible d'étudier la transition d'Anderson avec une résolution en énergie bien supérieure aux expériences précédentes.This manuscript summarizes the work of a thesis on Anderson's localization and transport of ultra-cold matter waves in disordered media. This is an experimental work aiming to study the Anderson transition separating the energy states of a quantum particle placed in a disordered potential into two phases: localized states and diffusive states.First, we will recall some fundamental concepts about wave localization and how such phenomenon is linked with some interference effects. Then, we will give a global description of the experimental set-up allowing to prepare the ultra-cold atomic samples used as a source of quantum matter waves, and to generate the speckle field used as disordered potential for the atoms.At the end of this introductory work, the concepts of localization introduced previously will be applied to the transport of cold atoms in a speckle field. A brief state of the art of cold-atom experiments dealing with the Anderson transition will allow us to set the limits of these works in terms of energy control on the atomic states. These limitations will then motivate the implementation of a new experimental "spectroscopic" method allowing a complete control of the energy of the atoms placed in disorder.The concept of spectral function will then be presented as a fundamental tool for characterizing energy states and for calibrating the energy reliability of the spectroscopic method. Finally, the experimental results on the measurement of spectral functions by this new spectroscopic method will show that it would be indeed possible to study the Anderson transition with a much higher energy resolution than the previous experiments

    Suppression and Revival of Weak Localization through Control of Time-Reversal Symmetry

    No full text
    We report on the observation of suppression and revival of coherent backscattering of ultracold atoms launched in an optical disorder in a quasi-2D geometry and submitted to a short dephasing pulse, as proposed by Micklitz, Müller, and Altland [Phys. Rev. B 91, 064203 (2015)]. This observation demonstrates a novel and general method to study weak localization by manipulating time reversal symmetry in disordered systems. In future experiments, this scheme could be extended to investigate higher order localization processes at the heart of Anderson (strong) localization

    Ultracold atoms in disordered potentials: elastic scattering time in the strong scattering regime

    Get PDF
    International audienceWe study the elastic scattering time τ s of ultracold atoms propagating in optical disordered potentials in the strong scattering regime, going beyond the recent work of J. Richard et al. Phys. Rev. Lett. 122 100403 (2019). There, we identified the crossover between the weak and the strong scattering regimes by comparing direct measurements and numerical simulations to the first order Born approximation. Here we focus specifically on the strong scattering regime, where the first order Born approximation is not valid anymore and the scattering time is strongly influenced by the nature of the disorder. To interpret our observations, we connect the scattering time τ s to the profiles of the spectral functions that we estimate using higher order Born perturbation theory or self-consistent Born approximation. The comparison reveals that self-consistent methods are well suited to describe τ s for Gaussian-distributed disorder, but fails for laser speckle disorder. For the latter, we show that the peculiar profiles of the spectral functions, as measured independently in V. Volchkov et al. Phys. Rev. Lett. 120, 060404 (2018), must be taken into account. Altogether our study characterizes the validity range of usual theoretical methods to predict the elastic scattering time of matter waves, which is essential for future close comparison between theory and experiments, for instance regarding the ongoing studies on Anderson localization

    Elastic Scattering Time of Matter-Waves in Disordered Potentials

    Get PDF
    International audienceWe report on an extensive study of the elastic scattering time τs of matter-waves in optical disordered potentials. Using direct experimental measurements, numerical simulations and comparison with first-order Born approximation based on the knowledge of the disorder properties, we explore the behavior of τs over more than three orders of magnitude, spanning from the weak to the strong scattering regime. We study in detail the location of the crossover and, as a main result, we reveal the strong influence of the disorder statistics, especially on the relevance of the widely used Ioffe-Regel-like criterion kls ∼ 1. While it is found to be relevant for Gaussian-distributed disordered potentials, we observe significant deviations for laser speckle disorders that are commonly used with ultracold atoms. Our results are crucial for connecting experimental investigation of complex transport phenomena, such as Anderson localization, to microscopic theories
    corecore