25 research outputs found

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‟ , W+bb‟ and W+cc‟ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓΜ , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‟t\overline{t}, W+bb‟W+b\overline{b} and W+cc‟W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓΜW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Measurement of the J/ψ pair production cross-section in pp collisions at s=13 \sqrt{s}=13 TeV

    Get PDF
    The production cross-section of J/ψ pairs is measured using a data sample of pp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13 \sqrt{s}=13 TeV, corresponding to an integrated luminosity of 279 ±11 pb−1^{−1}. The measurement is performed for J/ψ mesons with a transverse momentum of less than 10 GeV/c in the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be 15.2 ± 1.0 ± 0.9 nb. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψ pair are measured and compared to theoretical predictions.The production cross-section of J/ψJ/\psi pairs is measured using a data sample of pppp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13 TeV\sqrt{s} = 13 \,{\mathrm{TeV}}, corresponding to an integrated luminosity of 279±11 pb−1279 \pm 11 \,{\mathrm{pb^{-1}}}. The measurement is performed for J/ψJ/\psi mesons with a transverse momentum of less than 10 GeV/c10 \,{\mathrm{GeV}}/c in the rapidity range 2.0<y<4.52.0<y<4.5. The production cross-section is measured to be 15.2±1.0±0.9 nb15.2 \pm 1.0 \pm 0.9 \,{\mathrm{nb}}. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψJ/\psi pair are measured and compared to theoretical predictions

    Measurement of the B0s→Ό+Ό− Branching Fraction and Effective Lifetime and Search for B0→Ό+Ό− Decays

    Get PDF
    A search for the rare decays Bs0→Ό+ÎŒ- and B0→Ό+ÎŒ- is performed at the LHCb experiment using data collected in pp collisions corresponding to a total integrated luminosity of 4.4  fb-1. An excess of Bs0→Ό+ÎŒ- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→Ό+ÎŒ-)=(3.0±0.6-0.2+0.3)×10-9, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→Ό+ÎŒ- effective lifetime, τ(Bs0→Ό+ÎŒ-)=2.04±0.44±0.05  ps, is reported. No significant excess of B0→Ό+ÎŒ- decays is found, and a 95% confidence level upper limit, B(B0→Ό+ÎŒ-)<3.4×10-10, is determined. All results are in agreement with the standard model expectations.A search for the rare decays Bs0→Ό+Ό−B^0_s\to\mu^+\mu^- and B0→Ό+Ό−B^0\to\mu^+\mu^- is performed at the LHCb experiment using data collected in pppp collisions corresponding to a total integrated luminosity of 4.4 fb−1^{-1}. An excess of Bs0→Ό+Ό−B^0_s\to\mu^+\mu^- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→Ό+Ό−)=(3.0±0.6−0.2+0.3)×10−9{\cal B}(B^0_s\to\mu^+\mu^-)=\left(3.0\pm 0.6^{+0.3}_{-0.2}\right)\times 10^{-9}, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→Ό+Ό−B^0_s\to\mu^+\mu^- effective lifetime, τ(Bs0→Ό+Ό−)=2.04±0.44±0.05\tau(B^0_s\to\mu^+\mu^-)=2.04\pm 0.44\pm 0.05 ps, is reported. No significant excess of B0→Ό+Ό−B^0\to\mu^+\mu^- decays is found and a 95 % confidence level upper limit, B(B0→Ό+Ό−)<3.4×10−10{\cal B}(B^0\to\mu^+\mu^-)<3.4\times 10^{-10}, is determined. All results are in agreement with the Standard Model expectations

    Measurements of prompt charm production cross-sections in pp collisions at s=5 \sqrt{s}=5 TeV

    Get PDF
    Production cross-sections of prompt charm mesons are measured using data from pppp collisions at the LHC at a centre-of-mass energy of 5 5\,TeV. The data sample corresponds to an integrated luminosity of 8.60±0.33 8.60\pm0.33\,pb−1^{-1} collected by the LHCb experiment. The production cross-sections of D0D^0, D+D^+, Ds+D_s^+, and D∗+D^{*+} mesons are measured in bins of charm meson transverse momentum, pTp_{\text{T}}, and rapidity, yy. They cover the rapidity range 2.0<y<4.52.0 < y < 4.5 and transverse momentum ranges 0<pT<10 GeV/c0 < p_{\text{T}} < 10\, \text{GeV}/c for D0D^0 and D+D^+ and 1<pT<10 GeV/c1 < p_{\text{T}} < 10\, \text{GeV}/c for Ds+D_s^+ and D∗+D^{*+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1<pT<8 GeV/c1 < p_{\text{T}} < 8\, \text{GeV}/c are determined to be \begin{equation*} \sigma(pp\rightarrow D^0 X) = 1190 \pm 3 \pm 64\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^+ X) = 456 \pm 3 \pm 34\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D_s^+ X) = 195 \pm 4 \pm 19\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^{*+} X)= 467 \pm 6 \pm 40\,\mu\text{b} \end{equation*} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pp collisions at the LHC at a centre-of-mass energy of 5 TeV. The data sample corresponds to an integrated luminosity of 8.60 ± 0.33 pb−1^{−1} collected by the LHCb experiment. The production cross-sections of D0^{0}, D+^{+}, Ds+_{s}^{+} , and D∗+^{∗+} mesons are measured in bins of charm meson transverse momentum, pT_{T}, and rapidity, y. They cover the rapidity range 2.0 < y < 4.5 and transverse momentum ranges 0 < pT_{T} < 10 GeV/c for D0^{0} and D+^{+} and 1 < pT_{T} < 10 GeV/c for Ds+_{s}^{+} and D∗+^{∗+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1 < pT_{T} < 8 GeV/c are determined to be σ(pp→D0X)=1004±3±54ÎŒb,σ(pp→D+X)=402±2±30ÎŒb,σ(pp→Ds+X)=170±4±16ÎŒb,σ(pp→D∗+X)=421±5±36ÎŒb, \begin{array}{l}\sigma \left( pp\to {D}^0X\right)=1004\pm 3\pm 54\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}^{+}X\right)=402\pm 2\pm 30\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}_s^{+}X\right)=170\pm 4\pm 16\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}^{\ast +}X\right)=421\pm 5\pm 36\mu \mathrm{b},\end{array} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pppp collisions at the LHC at a centre-of-mass energy of 5 5\,TeV. The data sample corresponds to an integrated luminosity of 8.60±0.33 8.60\pm0.33\,pb−1^{-1} collected by the LHCb experiment. The production cross-sections of D0D^0, D+D^+, Ds+D_s^+, and D∗+D^{*+} mesons are measured in bins of charm meson transverse momentum, pTp_{\text{T}}, and rapidity, yy. They cover the rapidity range 2.0<y<4.52.0<y<4.5 and transverse momentum ranges 0<pT<10 GeV/c0 < p_{\text{T}} < 10\, \text{GeV}/c for D0D^0 and D+D^+ and 1<pT<10 GeV/c1 < p_{\text{T}} < 10\, \text{GeV}/c for Ds+D_s^+ and D∗+D^{*+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1<pT<8 GeV/c1 < p_{\text{T}} < 8\, \text{GeV}/c are determined to be \sigma(pp\rightarrow D^0 X) = 1004 \pm 3 \pm 54\,\mu\text{b} \sigma(pp\rightarrow D^+ X) = 402 \pm 2 \pm 30\,\mu\text{b} \sigma(pp\rightarrow D_s^+ X) = 170 \pm 4 \pm 16\,\mu\text{b} \sigma(pp\rightarrow D^{*+} X)= 421 \pm 5 \pm 36\,\mu\text{b} where the uncertainties are statistical and systematic, respectively

    Towards a Flexible Author Name Disambiguation Framework

    Get PDF
    summary:In this paper we propose a flexible, modular framework for author name disambiguation. Our solution consists of the core which orchestrates the disambiguation process, and replaceable modules performing concrete tasks. The approach is suitable for distributed computing, in particular it maps well to the MapReduce framework. We describe each component in detail and discuss possible alternatives. Finally, we propose procedures for calibration and evaluation of the described system

    Observation of the Ξb−→J/ψΛK−\varXi^{-}_{b}\to J/\psi\varLambda K^{-} decay

    No full text
    The observation of the decay Ξb−→J/ψΛK−\varXi_{b}^{-}\to J/\psi\varLambda K^{-} is reported, using a data sample corresponding to an integrated luminosity of 3 fb−13~\mathrm{fb}^{-1}, collected by the LHCb detector in pppp collisions at centre-of-mass energies of 77 and 8 TeV8~\mathrm{TeV}. The production rate of Ξb−\varXi_{b}^{-} baryons detected in the decay Ξb−→J/ψΛK−\varXi_{b}^{-}\to J/\psi\varLambda K^{-} is measured relative to that of Λb0\varLambda_{b}^{0} baryons using the decay Λb0→J/ψΛ\varLambda_{b}^{0}\to J/\psi \varLambda. Integrated over the bb-baryon transverse momentum pT<25 GeV/cp_{\rm T}<25~\mathrm{GeV/}c and rapidity 2.0<y<4.52.0 < y < 4.5, the measured ratio is \begin{equation*} \frac{f_{\varXi_{b}^{-}}}{f_{\varLambda_{b}^{0}}}\frac{\mathcal{B}(\varXi_{b}^{-}\to J/\psi\varLambda K^{-})}{\mathcal{B}(\varLambda_{b}^{0}\to J/\psi \varLambda)}=(4.19\pm 0.29~(\mathrm{stat})\pm0.14~(\mathrm{syst}))\times 10^{-2}, \end{equation*}where fΞb−f_{\varXi_{b}^{-}} and fΛb0f_{\varLambda_{b}^{0}} are the fragmentation fractions of b→Ξb−b\to\varXi_{b}^{-} and b→Λb0b\to\varLambda_{b}^{0} transitions, and B\mathcal{B} represents the branching fraction of the corresponding bb-baryon decay. The mass difference between Ξb−\varXi_{b}^{-} and Λb0\varLambda_{b}^{0} baryons is measured to be \begin{equation*} M(\varXi_{b}^{-})-M(\varLambda_{b}^{0})=177.08\pm0.47~(\mathrm{stat})\pm0.16~(\mathrm{syst} )~\mathrm{MeV/}c^{2}. \end{equation*}The observation of the decay Ξb−→J/ψΛK− is reported, using a data sample corresponding to an integrated luminosity of 3fb−1 , collected by the LHCb detector in pp collisions at centre-of-mass energies of 7 and 8TeV . The production rate of Ξb− baryons detected in the decay Ξb−→J/ψΛK− is measured relative to that of Λb0 baryons using the decay Λb0→J/ψΛ . Integrated over the b -baryon transverse momentum pT<25GeV/c and rapidity 2.0<y<4.5 , the measured ratio is fΞb−fΛb0B(Ξb−→J/ψΛK−)B(Λb0→J/ψΛ)=(4.19±0.29 (stat)±0.15 (syst))×10−2, where fΞb− and fΛb0 are the fragmentation fractions of b→Ξb− and b→Λb0 transitions, and B represents the branching fraction of the corresponding b -baryon decay. The mass difference between Ξb− and Λb0 baryons is measured to be M(Ξb−)−M(Λb0)=177.08±0.47 (stat)±0.16 (syst)MeV/c2.The observation of the decay Ξb−→J/ψΛK−\varXi^{-}_{b}\to J/\psi\varLambda K^{-} is reported, using a data sample corresponding to an integrated luminosity of 3 fb−13~\mathrm{fb}^{-1}, collected by the LHCb detector in pppp collisions at centre-of-mass energies of 77 and 8 TeV8~\mathrm{TeV}. The production rate of Ξb−\varXi_{b}^{-} baryons detected in the decay Ξb−→J/ψΛK−\varXi_{b}^{-}\to J/\psi\varLambda K^{-} is measured relative to that of Λb0\varLambda_{b}^{0} baryons using the decay Λb0→J/ψΛ\varLambda_{b}^{0}\to J/\psi \varLambda. Integrated over the bb-baryon transverse momentum pT<25 GeV/cp_{\rm T}<25~\mathrm{GeV/}c and rapidity 2.0<y<4.52.0<y<4.5, the measured ratio is \begin{equation*} \frac{f_{\varXi_{b}^{-}}}{f_{\varLambda_{b}^{0}}}\frac{\mathcal{B}(\varXi_{b}^{-}\to J/\psi\varLambda K^{-})}{\mathcal{B}(\varLambda_{b}^{0}\to J/\psi \varLambda)}=(4.19\pm 0.29~(\mathrm{stat})\pm0.15~(\mathrm{syst}))\times 10^{-2}, \end{equation*}where fΞb−f_{\varXi_{b}^{-}} and fΛb0f_{\varLambda_{b}^{0}} are the fragmentation fractions of b→Ξb−b\to\varXi_{b}^{-} and b→Λb0b\to\varLambda_{b}^{0} transitions, and B\mathcal{B} represents the branching fraction of the corresponding bb-baryon decay. The mass difference between Ξb−\varXi_{b}^{-} and Λb0\varLambda_{b}^{0} baryons is measured to be \begin{equation*} M(\varXi_{b}^{-})-M(\varLambda_{b}^{0})=177.08\pm0.47~(\mathrm{stat})\pm0.16~(\mathrm{syst} )~\mathrm{MeV/}c^{2}. \end{equation*
    corecore