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Abstract CERMINE is a comprehensive open-source sys-
tem for extracting structuredmetadata from scientific articles
in a born-digital form. The system is based on a modu-
lar workflow, whose loosely coupled architecture allows for
individual component evaluation and adjustment, enables
effortless improvements and replacements of independent
parts of the algorithm and facilitates future architecture
expanding. The implementations of most steps are based on
supervised and unsupervised machine learning techniques,
which simplifies the procedure of adapting the system to new
document layouts and styles. The evaluation of the extrac-
tion workflow carried out with the use of a large dataset
showed good performance for most metadata types, with the
average F score of 77.5%. CERMINE system is available
under an open-source licence and can be accessed at http://
cermine.ceon.pl. In this paper, we outline the overall work-
flow architecture and provide details about individual steps
implementations. We also thoroughly compare CERMINE
to similar solutions, describe evaluation methodology and
finally report its results.
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1 Introduction

Academic literature is a very important communication
channel in the scientific world. Keeping track of the latest
scientific findings and achievements, typically published in
journals or conference proceedings, is a crucial aspect of the
research work. Ignoring this task can result in deficiencies
in the knowledge related to the latest discoveries and trends,
which in turn can lower the quality of the research, make
results assessment much harder and significantly limit the
possibility to find new interesting research areas and chal-
lenges. Unfortunately, studying scientific literature, and in
particular being up-to-date with the latest positions, is diffi-
cult and extremely time-consuming. Themain reason for this
is huge and constantly growing volume of scientific litera-
ture, and also the fact that publications are mostly available
in the form of unstructured text.

Modern digital libraries support the process of studying
the literature by providing intelligent search tools, proposing
similar and related documents, building citation and author
networks, and soon. In order to provide suchhigh-quality ser-
vices, the library requires an access not only to the sources
of stored documents, but also to their metadata including
information such as title, authors, keywords, abstract or bib-
liographic references. Unfortunately, in practice good quality
metadata is not always available, sometimes it is missing, full
of errors or fragmentary. In such cases, the library needs a
reliable automatic method to extract metadata and references
from documents at hand.

Even limited to analysing scientific literature only, the
problem of extracting the document’s metadata remains
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difficult and challenging, mainly due to the vast diversity
of possible layouts and styles used in articles. In different
documents, the same type of information can be displayed
in different places using a variety of formatting styles and
fonts. For instance, a random subset of 125,000 documents
from PubMed Central [1] contains publications from nearly
500 different publishers, many of which use original lay-
outs and styles in their articles. What is more, PDF format,
which is currently the most popular format for storing source
documents, does not preserve the information related to
the document’s structure, such as words and paragraphs,
lists and enumerations, the structure of tables, the hier-
archy of sections, or the reading order of the text. This
information has to be reverse engineered based on the text
content and the way the text is displayed in the source
file.

These problems are addressed by CERMINE—a com-
prehensive tool for automatic metadata extraction from
born-digital scientific literature. The extraction algorithm
proposed by CERMINE performs a thorough analysis of the
input scientific publication in PDF format and extracts:

– a rich set of document’s metadata,
– a list of bibliographic references alongwith theirmetadata,
– structured full text with sections and subsections (cur-
rently in experimental phase).

CERMINE is based on a modular workflow composed of
three paths and a number of steps with carefully defined
input and output. By virtue of such workflow architecture,
individual steps can be maintained separately. As a result, it
is easy to perform evaluation or training, improve or replace
one step implementation without changing other parts of the
workflow.

Designed as a universal solution, CERMINE is able to
handle a vast variety of publication layouts reasonably well,
instead of being perfect in processing a limited number
of document layouts only. We achieved this by employing
supervised and unsupervised machine learning algorithms
trained on large diverse datasets. This decision also resulted
in increased maintainability of the system, as well as its abil-
ity to adapt to new, previously unseen document layouts.

The evaluation we conducted showed good performance
of the key process steps and the entire metadata extraction
process, with the overall F score of 77.5% (the details are
provided in Sect. 5.5). The comparison to other similar sys-
tems showed CERMINE performs better for most metadata
types.

CERMINE web service, as well as the source code, can
be accessed online [2].

This article is an extended version of the conference paper
describing CERMINE system [3]. In contrast to the previous
version, the article contains:

– detailed descriptions of all the extraction algorithm com-
ponents,

– the details related to feature selection for zone classifiers,
– new evaluation results for algorithms trained on GRO-
TOAP2 dataset [4],

– the evaluation of the bibliography extraction workflow,
– the comparison to other similar systems.

In the following sections, we describe the state of the art, pro-
vide the details about the overall workflow architecture and
individual implementations and finally report the evaluation
methodology and its results.

2 State of the art

Extracting metadata from articles and other documents is a
well-studied problem. Older approaches expected scanned
documents on the input and were prepared for executing full
digitization from bitmap images. Nowadays, we have to deal
with growing amount of born-digital documents, which do
not require individual character recognition. The approaches
to the problem differ in the scope of the solution, supported
file formats and methods and algorithms used.

Most approaches focus on extracting the article’smetadata
only and often do not process the entire input document.
Proposed solutions are usually based on rules and heuristics
or machine learning techniques.

For example, Giuffrida et al. [5] extract the content from
PostScript files using a tool based onpstotext, while basic
document metadata is extracted by a set of rules and features
computed for extracted text chunks. Another example of a
rule-based system is PDFX described by Constatin et al. [6].
PDFX can be used for converting scholarly articles in PDF
format to their XML representation by annotating fragments
of the input documents and extracts basic metadata, struc-
tured full text and unparsed reference strings. Pdf-extract [7]
is an open-source tool for identifying and extracting semanti-
cally significant regions of scholarly articles in PDF format.
It uses a combination of visual cues and content traits to
perform structural analysis in order to determine columns,
headers, footers and sections, detect references sections and
finally extract individual references.

Machine learning-based approaches are far more popular.
They differ in classification algorithms, document fragments
that undergo the classification (text chunks, lines or blocks)
and extracted features. For example, Han et al. [8] extract
metadata from the headers of scientific papers by two-stage
classification of text lines with the use of support vec-
tor machines and text-related features. Another example of
SVM-based approach is metadata extractor used in CRIS
systems proposed by Kovacevic et al. [9]. The tool classi-
fies the lines of text using both geometric and text-related
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features in order to extract the document’s metadata from
PDFs. Lu et al. [10] analyse scanned scientific journals in
order to obtain volume level, issue level and article level
metadata. In their approach, the pages are first OCRed, rule-
based pattern matching is used for volume and issue title
pages, while article metadata is extracted using SVM and
both geometric and textual features of text lines.

Other classification techniques include for example hid-
den Markov models, neural classifiers, maximum entropy
and conditional random fields. Marinai [11] extracts charac-
ters from PDF documents using JPedal package, performs
rule-based page segmentation, and finally employs neural
classifier for zone classification.Cui andChen [12] useHMM
classifier to extractmetadata fromPDFdocuments,while text
extraction and page segmentation are done by pdftohtml,
a third-party open-source tool. The system based on Team-
Beam algorithm proposed by Kern et al. [13] is able to
extract a basic set of metadata from PDF documents using an
enhanced Maximum Entropy classifier. Lopez [14] proposes
GROBID system for analysing scientific texts in PDF format.
GROBID uses CRF in order to extract document’s metadata,
full text and a list of parsed bibliographic references. ParsCit,
described by Luong et al. [15] also uses CRF for extracting
the logical structure of scientific articles, including the docu-
ment’smetadata, structured full text and parsed bibliography.
ParsCit analyses documents in text format, and therefore does
not use geometric hints present in the PDF files.

Reference sections are typically located in the documents
using heuristics [6,7,16,17] or machine learning [14,18].

Citation parsing, that is extracting metadata from cita-
tion strings, is usually performed using regular expressions
and knowledge-based approaches [19,20], or more popu-
lar machine learning techniques, such as CRF [16–18,21],
SVM [22] or HMM [23].

A number of systems mentioned above are available
online: PDFX [24] (the tool is closed source, available only
as a web service), GROBID [25], ParsCit [26] and Pdf-
extract [7]. In Sect. 5.6, we report the results of comparing the
performance of these tools with CERMINE. Table 1 shows
the scope of the information various metadata extraction sys-
tems are able to extract.

The most important features differentiating CERMINE
from other approaches are:

– CERMINE is able to extract bibliographic information
related to the document, such as journal name, volume,
issue or pages range.

– The algorithms use not only the text content of the doc-
ument, but also its geometric features related to the way
the text is displayed in the source PDF file.

– Our solution is based mostly on machine learning,
which increases its ability to conform to different article
layouts.

– The flexibility of the system implementation is granted by
its modular architecture.

– For most metadata types, the solution is very effective.
– The source code is open and the web service is available
online [2].

Table 1 The comparison of the
scope of the information
extracted by various metadata
extraction systems

CERMINE PDFX GROBID ParsCit Pdf-extract

Title � � � � �
Author � � � � ×
Affiliation � × � � ×
Affiliation’s metadata � × � × ×
Author–affiliation � × � × ×
Email address � � � � ×
Author–email � × � × ×
Abstract � � � � ×
Keywords � × � � ×
Journal � × × × ×
Volume � × × × ×
Issue � × × × ×
Pages range � × × × ×
Year � × � × ×
DOI � × � × ×
Reference � � � � �
Reference’s metadata � × � � ×
The table shows simple metadata types (e.g. title, author, abstract or bibliographic references), relations bet-
ween them (author–affiliation, author–email address), and also metadata in the structured form (references
and affiliations along with their metadata)
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3 System architecture

CERMINE accepts a scientific publication in PDF format
on the input. The extraction algorithm inspects the entire
content of the document and produces two kinds of output:
the document’s metadata and bibliography.

CERMINE’s extraction workflow is composed of three
paths (Fig. 1):

(A) Basic structure extraction path takes a PDF file on the
input and produces its geometric hierarchical represen-
tation, which stores the entire text content of the input
document and the geometric features related to the way
the text is displayed in the PDF file. More precisely,
the structure is composed of pages, zones, lines, words
and characters, along with their coordinates and dimen-
sions. Additionally, the reading order of all elements is
set and every zone is labelled with one of four general
categories: metadata, references, body or other.

(B) Metadata extraction path analyses metadata parts of the
geometric hierarchical structure and extracts a rich set
of document’s metadata from them.

(C) Bibliography extraction path analyses parts of the struc-
ture labelled as references. The result is a list of
document’s parsed bibliographic references.

Table 2 shows the decomposition of the extraction work-
flow into paths and steps and provides basic information
about tools and algorithms used for every step.

3.1 Models and formats

CERMINE’s input document format is PDF, currently the
most popular format for storing the sources of scientific
publications. A PDF file contains by design the text of the
document in the form of a list of chunks of various length
specifying the position, size and other geometric features

of the text as well as the information related to the fonts and
graphics. PDF documents look the same nomatter what soft-
ware or hardware is used for viewing them. Unfortunately,
the format does not preserve any information related to the
logical structure of the text, such as words, lines, paragraphs,
enumerations, sections, section titles or even the reading
order of text chunks. This information has to be deduced
from the geometric features of the text.

Currently, the extraction workflow does not include any
OCR phase, it analyses only the PDF text stream found in
the input document. As a result, PDF documents contain-
ing scanned pages in the form of images will not be properly
processed.We plan to provide this functionality in the future.
Thanks to the flexible architecture of the workflow, the only
required change is adding an alternative implementation of
the character extraction step, able to perform optical charac-
ter recognition on scanned pages and extract characters along
with dimensions and positions. Other parts of the workflow
will remain the same.

CERMINE’s intermediate model of the document con-
structed during thefirst process path is a hierarchical structure
that holds the entire text content of the article, while also
preserving the information related to the way elements are
displayed in the corresponding PDF file. In this representa-
tion, an article is a list of pages, each page contains a list
of zones, each zone contains a list of lines, each line con-
tains a list of words, and finally each word contains a list
of characters. Each structure element can be described by its
text content and bounding box (a rectangle enclosing the ele-
ment). The structure contains also the natural reading order
for the elements on each level.Additionally, labels describing
the role in the document are assigned to zones.

The smallest elements in the structure are individual char-
acters. A word is a continuous sequence of characters placed
in one line with no spaces between them. Punctuation marks
and typographical symbols can be separate words or parts
of adjacent words, depending on the presence ofspaces.

Fig. 1 CERMINE’s extraction
workflow architecture. At the
beginning, the basic structure is
extracted from the PDF file.
Then, metadata and
bibliography are extracted in
two parallel paths
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Table 2 The decomposition of CERMINE’s extraction workflow into independent processing paths and steps

Path Step Goal Implementation

A. Basic structure extraction A1. Character extraction Extracting individual characters along with their
page coordinates and dimensions from the input
PDF file

iText library

A2. Page segmentation Constructing the document’s geometric
hierarchical structure containing (from the top
level) pages, zones, lines, words and characters,
along with their page coordinates and dimensions

Enhanced Docstrum

A3. Reading order resolving Determining the reading order for all structure
elements

Bottom-up heuristic-based

A4. Initial zone classification Classifying the document’s zones into four main
categories: metadata, body, references and other

SVM

B. Metadata extraction B1. Metadata zone
classification

Classifying the document’s zones into specific
metadata classes

SVM

B2. Metadata extraction Extracting atomic metadata information from
labelled zones

Simple rule-based

C. Bibliography extraction C1. Reference strings
extraction

Dividing the content of references zones into
individual reference strings

K-means clustering

C2. Reference parsing Extracting metadata information from references
strings

CRF

Hyphenated words that are divided into two lines appear in
the structure as two separate words that belong to different
lines. A line is a sequence of words that forms a consistent
fragment of the document’s text.Words placed geometrically
in the same line of the page, that are parts of neighbouring
columns, in the structure do not belong to the same line. A
zone is a consistent fragment of the document’s text, geomet-
rically separated from surrounding fragments and not divided
into paragraphs or columns.

All bounding boxes are rectangles with edges parallel to
the page’s edges. A bounding box is defined by two points:
left upper corner and right lower corner of the rectangle. The
coordinates are given in typographic points (1 typographic
point equals to 1/72 of an inch). The origin of the coordinate
system is the left upper corner of the page.

The model can be serialized using XML TrueViz for-
mat [27]. The listing below shows a fragment of an example
TrueViz file. Repeated fragments or fragments that are not
used by the system have been omitted.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Document SYSTEM "Trueviz.dtd">
<Document>
[...]
<Page>

<PageID Value="0"/>
[...]
<PageNext Value="1"/>
<Zone>

<ZoneID Value="0"/>
<ZoneCorners>

<Vertex x="55.4" y="34.3"/>
<Vertex x="250.5" y="58.3"/>

</ZoneCorners>

<ZoneNext Value="1"/>
<Classification>

<Category Value="BIB_INFO"/>
<Type Value=""/>

</Classification>
<Line>

<LineID Value="0"/>
<LineCorners>

<Vertex x="55.4" y="34.3"/>
<Vertex x="250.5" y="58.3"/>

</LineCorners>
<LineNext Value="1"/>
<LineNumChars Value=""/>
<Word>

<WordID Value="0"/>
<WordCorners>

<Vertex x="55.4" y="34.3"/>
<Vertex x="115.3" y="58.3"/>

</WordCorners>
<WordNext Value="1"/>
<WordNumChars Value=""/>
<Character>

<CharacterID Value="0"/>
<CharacterCorners>

<Vertex x="55.4" y="34.3"/>
<Vertex x="74.1" y="58.3"/>

</CharacterCorners>
<CharacterNext Value="1"/>
<GT_Text Value="B"/>

</Character>
<Character>
[...]

</Word>
[...]

</Line>
[...]

</Zone>
</Page>

</Document>
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The output format of the extraction workflow is NLM
JATS [28]. JATS (Journal Article Tag Suite) defines a rich
set of XML elements and attributes for describing scientific
publications and is an application ofNISOZ39.96-2012 stan-
dard [29]. Documents in JATS format can store a wide range
of structured metadata of the document (title, authors, affil-
iations, abstract, journal name, identifiers, etc.), the full text
(the hierarchy of sections, headers and paragraphs, structured
tables, equations, etc.), the document’s bibliography in the
form of a list of references along with their identifiers and
metadata, and also the information related to the text format-
ting.

4 Extraction workflow implementation

In this section, we describe in detail the approaches and algo-
rithms used to implement all the individual workflow steps.

4.1 Layout analysis

Layout analysis is the initial phase of the entire workflow.
Its goal is to create a hierarchical structure of the document
preserving the entire text content of the input document and
features related to theway the text is displayed in thePDFfile.

Layout analysis is composed of the following steps:

1. Character extraction (A1)—extracting individual charac-
ters from a PDF document.

2. Page segmentation (A2)—joining characters into words,
lines and zones.

3. Reading order determination (A3)—calculating the read-
ing order for all the structure levels.

4.1.1 Character extraction

The purpose of the character extraction step is to extract
individual characters from the PDF stream along with their
positions on the page, widths and heights. These geometric
parameters play important role in further steps, in particular
page segmentation and content classification.

The implementation of character extraction is based on
open-source iText [30] library. We use iText to iterate
over PDF’s text-showing operators. During the iteration, we
extract text strings along with their size and position on the
page. Next, extracted strings are split into individual charac-
ters and their individual widths and positions are calculated.
The result is an initial flat structure of the document, which
consists only of pages and characters. Thewidths and heights
computed for individual characters are approximate and can
slightly differ from the exact values depending on the font,
style and characters used. Fortunately, those approximate val-
ues are sufficient for further steps.

4.1.2 Page segmentation

The goal of page segmentation step is to create a geometric
hierarchical structure storing the document’s content. As a
result the document is represented by a list of pages, each
page contains a set of zones, each zone contains a set of
text lines, each line contains a set of words, and finally each
word contains a set of individual characters. Each object in
the structure has its content, position and dimensions. The
structure is heavily used in further steps, especially zone clas-
sification and bibliography extraction.

Page segmentation is implemented with the use of a
bottom-up Docstrum algorithm [31]:

1. The algorithm is based to a great extent on the analysis
of the nearest-neighbour pairs of individual characters. In
the first step, five nearest components for every character
are identified (red lines in Fig. 2).

2. In order to calculate the text orientation (the skew angle),
we analyse the histogram of the angles between the ele-
ments of all nearest-neighbour pairs. The peak value is
assumed to be the angle of the text. Since in the case
of born-digital documents, the skew is almost always
horizontal, and this step is mostly useful for documents
containing scanned pages.

3. Next, within-line spacing is estimated by detecting the
peak of the histogram of distances between the nearest
neighbours. For this histogram, we use only those pairs,
in which the angle between components is similar to the
estimated text orientation angle (blue lines in Fig. 2). All
the histograms used in Docstrum are smoothed to avoid
detecting local abnormalities. An example of a smoothed
distance histogram is shown in Fig. 3.

4. Similarly, between-line spacing is also estimatedwith the
use of a histogram of the distances between the nearest-
neighbour pairs. In this case, we include only those pairs
that are placed approximately in the line perpendicular
to the text line orientation (green lines in Fig. 2).

5. Next, line segments are found by performing a tran-
sitive closure on within-line nearest-neighbour pairs.

Fig. 2 An example fragment of a text zone in a scientific article. The
figure shows five nearest neighbours of a given character (red lines),
neighbours placed in the same line used to determine in-line spacing
(blue lines), and neighbours placed approximately in the line perpendic-
ular to the text line orientation used to determine between-line spacing
(green lines) (color figure online)
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Fig. 3 An example of a nearest-neighbour distance histogram. The fig-
ure shows both original and smoothed versions of the histogram. The
peak distance chosen based on the original data would be the global
maximum, even though the histogram contains two close peaks of sim-
ilarly high frequency. Thanks to smoothing both local peaks are taken
into account, shifting the resulting peak slightly to the left and yielding
more reliable results

To prevent joining line segments belonging to different
columns, the components are connected only if the dis-
tance between them is sufficiently small.

6. The zones are then constructed by grouping the line
segments on the basis of heuristics related to spatial
and geometric characteristics: parallelness, distance and
overlap.

7. The segments belonging to the same zone and placed in
one line horizontally are merged into final text lines.

8. Finally, we divide the content of each text line into words
based on within-line spacing.

A few improvements were added to the Docstrum-based
implementation of page segmentation:

– the distance between connected components, which is
used for grouping components into lines, has been split
into horizontal and vertical distance (based on estimated
text orientation angle),

– fixed maximum distance between lines that belong to the
same zone has been replaced with a value scaled relatively
to the line height,

– merging of lines belonging to the same zone has been
added,

– rectangular smoothing window has been replaced with
Gaussian smoothing window,

– merging of highly overlapping zones has been added,
– words determination based on within-line spacing has
been added.

4.1.3 Reading order resolving

A PDF file contains by design a stream of strings that under-
goes extraction and segmentation process. As a result, we
obtain pages containing characters grouped into zones, lines
and words, all of which have a form of unsorted bag of items.
The aim of setting the reading order is to determine the right
sequence in which all the structure elements should be read.
This information is used in zone classifiers and also allows
to extract the full text of the document in the right order. An
example document page with a reading order of the zones is
shown in Fig. 4.

Readingorder resolving algorithm is basedon abottom-up
strategy: first characters are sorted within words and words
within lines horizontally, then lines are sorted vertically
within zones, and finally we sort zones. The fundamental
principle for sorting zones was taken from [32]. We make
use of an observation that the natural reading order in most
modern languages descends from top to bottom, if successive
zones are aligned vertically, otherwise it traverses from left
to right. There are few exceptions to this rule, for example,
Arabic script, and such cases would not be handled prop-
erly by the algorithm. This observation is reflected in the
distances counted for all zone pairs: the distance is calcu-
lated using the angle of the slope of the vector connecting

Fig. 4 An example page from a scientific publication. The image
shows the zones and their reading order
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zones. As a result, zones aligned vertically are in general
closer than those aligned horizontally. Then, using an algo-
rithm similar to hierarchical clustering methods, we build a
binary tree by repeatedly joining the closest zones and groups
of zones. After that, for every node its children are swapped,
if needed. Finally, an in order tree traversal gives the desired
zones order.

4.2 Content classification

The goal of content classification is to determine the role
played by every zone in the document. This is done in two
steps: initial zone classification (A4) andmetadata zone clas-
sification (B1).

The goal of initial classification is to label each zone with
one of four general classes: metadata (document’s metadata,
e.g. title, authors, abstract, keywords, and so on), references
(the bibliography section), body (publication’s text, sections,
section titles, equations, figures and tables, captions) or other
(acknowledgments, conflicts of interests statements, page
numbers, etc.).

The goal of metadata zone classification is to classify all
metadata zones into specific metadata classes: title (the title
of the document), author (the names of the authors), affilia-
tion (authors’ affiliations), editor (the names of the editors),
correspondence (addresses and emails), type (the type speci-
fied in the document, such as “research article”, “editorial” or
“case study”, abstract (document’s abstract), keywords (key-
words listed in the document), bib_info (for zones containing
bibliographic information, such as journal name, volume,
issue, DOI, etc.), dates (the dates related to the process of
publishing the article).

The classifiers are implemented in a similar way. They
both employ support vector machines, and the implementa-
tion is based on LibSVM library [33]. They differ in target
zone labels, extracted features and SVM parameters used.
The features, as well as SVMparameters were selected using
the same procedure, described in Sects. 4.2.1 and 4.2.2.

Support vector machines is a very powerful classification
technique able to handle a large variety of input and work
effectively even with training data of a small size. The algo-
rithm is based on finding the optimal separation hyperplane
and is little prone to overfitting. It does not require a lot of
parameters and can deal with highly dimensional data. SVM
is widely used for content classification and achieves very
good results in practice.

The decision of splitting content classification into two
separate classification steps, as opposed to implementing
only one zone classification step,was basedmostly on aspects
related to the workflow architecture and maintenance. In fact
both tasks have different characteristics and needs. The goal
of the initial classifier is to divide the article’s content into
three general areas of interest, which can be then analysed

independently in parallel, while metadata classifier performs
far more detailed analysis of only a small subset of all
zones.

The implementation of the initial classifier is more stable:
the target label set does not change, and once trained on a
reasonably large and diverse dataset, the classifier performs
well on other layouts as well. On the other hand, metadata
zones have much more variable characteristics across differ-
ent layouts, and from time to time there is a need to tune the
classifier or retrain it using a wider document set. What is
more, sometimes the classifier has to be extended to be able
to capture new labels, not considered before (for example a
special label for zones containing both author and affiliation,
a separate label for categories or general terms).

For these reasons, we decided to implement content clas-
sification in two separate steps. As a result, we can maintain
them independently, and for example adding another meta-
data label to the system does not change the performance of
recognizing the bibliography sections. It is also possible that
in the future the metadata classifier will be reimplemented
using a different technique, allowing to add new training
cases incrementally, for example using a form of online
learning.

For completeness, we compared the performance of a sin-
gle zone classifier assigning all needed labels in one step to
the classifier containing two separate classifiers executed in
a sequence (our current solution). The results can be found
in Sect. 5.3.

4.2.1 Feature selection

The features used by the classifiers were selected with the
use of the zone validation dataset (all the datasets used for
experiments are described in Sect. 5.1). For each classifier,
we analysed 97 features in total. The features capture various
aspects of the content and surroundings of the zones and can
be divided into the following categories:

– geometric—basedongeometric attributes, someexamples
include: zone’s height and width, height to width ratio,
zone’s horizontal and vertical position, the distance to the
nearest zone, empty space belowand above the zone,mean
line height, whether the zone is placed at the top, bottom,
left or right side of the page;

– lexical—based upon keywords characteristic for different
parts of narration, such as: affiliations, acknowledgments,
abstract, keywords, dates, references, or article type; these
features typically check, whether the text of the zone con-
tains any of the characteristic keywords;

– sequential—based on sequence-related information,
some examples include the label of the previous zone
(according to the reading order) and the presence of the
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same text blocks on the surrounding pages, whether the
zone is placed in the first/last page of the document;

– formatting—related to text formatting in the zone, exam-
ples include font size in the current and adjacent zones,
the amount of blank space inside zones, mean indentation
of text lines in the zone;

– heuristics—based on heuristics of various nature, such
as the count and percentage of lines, words, uppercase
words, characters, letters, upper/lowercase letters, digits,
whitespaces, punctuation, brackets, commas, dots, etc;
alsowhether each line startswith enumeration-like tokens,
or whether the zone contains only digits.

In general, feature selection was performed by analysing
the correlations between the features and between features
and expected labels. For simplicity, we treat all the features as
numerical variables; the values of binary features are decoded
as 0 or 1. The labels, on the other hand, are an unordered
categorical variable.

Let L be a set of zone labels for a given classifier, n the
number of the observations (zones) in the validation dataset
and k = 97 the initial number of analysed features. For i th
feature, where 0 ≤ i < k, we can define fi ∈ Rn , a vector
of the values of the feature i th for subsequent observations.
Let also l ∈ Ln be the corresponding vector of zone labels.

In the first step, we removed redundant features, highly
correlated with other features. For each pair of feature
vectors, we calculated the Pearson’s correlation score and
identified all the pairs fi , f j ∈ Rn , such that

|corr( fi , f j )| > 0.9

Next, for every feature from highly correlated pairs, we
calculated the mean absolute correlation:

meanCorr( fi ) = 1

k

k−1∑

j=0

corr( fi , f j )

and from each highly correlated pair, the feature with higher
meanCorr was eliminated. This left us with 78 and 75 fea-
tures for initial and metadata classifiers, respectively. Let’s
denote the number of remaining features as k′.

After eliminating features using correlations between
them, we analysed the features using their associations with
the expected zone labels vector l. To calculate the correla-
tion between a single feature vector fi (numeric) and label
vector l (unordered categorical), we employed Goodman and
Kruskal’s τ (tau) measure [34]. Let’s denote it as τ( fi , l).

Let f0, f1, . . . fk′−1 be the sequence of the feature vectors
ordered by non-decreasing τ measure, that is

τ( f0, l) ≤ τ( f1, l) ≤ · · · ≤ τ( fk′−1, l)

The features were then added to the classifier one by one,
starting from the best one (the mostly correlated with the
labels vector, fk′−1), and at the end the classifier contained the
entire feature set. At each step,we performed afivefold cross-
validation on the validation dataset and calculated the overall
F score as an average for individual labels. For completeness,
we also repeated the same process with reversed order of the
features, starting with less useful features. The results for
initial and metadata classifier are shown in Figs. 5 and 6,
respectively.

Using these results, we eliminated a number of the least
useful features f0, f1, . . . ft , such that the performance of
the classifier with the remaining features was similar to the
performance of the classifier trained on the entire feature set.
Final feature sets contain 53 and 51 features for initial and
metadata classifier, respectively.
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Fig. 5 Average F score for initial classifier for fivefold cross-
validation for various number of features. Blue line shows the change
in F score, while adding features from the most to the least useful one,
and the red line shows the increase with the reversed order. The vertical
line marks the feature set chosen for the final classifier (color figure
online)
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Fig. 6 Average F score for metadata classifier for fivefold cross-
validation for various number of features. Blue line shows the increase
in F score while adding features from the most to the least useful one,
and the red line shows the increase with the reversed order. The vertical
line marks the feature set chosen for the final classifier (color figure
online)
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4.2.2 SVM parameters adjustment

SVM parameters were also estimated using the zone vali-
dation dataset. The feature vectors were scaled linearly to
interval [0, 1] according to the bounds found in the learning
samples. In order to find the best parameters for the classi-
fiers we performed a grid search over a three-dimensional
space 〈K , Γ, C〉, where K is a set of kernel function types
(linear, fourth degree polynomial, radial-basis and sigmoid),
Γ = {2i |i ∈ [−15, 3]} is a set of possible values of the kernel
coefficient γ , and C = {2i |i ∈ [−5, 15]} is a set of possi-
ble values of the penalty parameter. For every combination
of the parameters, we performed a fivefold cross-validation.
Finally, we chose those parameters, for which we obtained
the highest mean F score (calculated as an average for indi-
vidual classes). We also used classes weights based on the
number of their training samples to set larger penalty for less
represented classes.

Parameters for the best obtained results are presented in
Tables 3 and 4. In both cases, we chose radial-basis kernel
function, and chosen values of C and γ parameters are 25

and 2−3 in the case of initial classifier and 29 and 2−3 in the
case of metadata classifier.

4.3 Metadata extraction

The purpose of this phase is to analyse zones labelled as
metadata and extract a rich set of document’s metadata
information, including: title, authors, affiliations, relations
author–affiliation, email addresses, relations author–email,

Table 3 The results of SVM parameters searching for initial classifi-
cation

Initial classification

Kernel Linear 4th poly. RBF Sigmoid

log2(C), log2(γ ) 7, 1 9, −5 5, −3 15, −13

Mean F1 (%) 90.7 93.5 93.9 90.1

The table shows the mean F score values for all kernel function types
obtained during fivefold cross-validation, as well as related values of C
and γ parameters

Table 4 The results of SVM parameters searching for metadata clas-
sification

Metadata classification

Kernel Linear 4th poly. RBF Sigmoid

log2(C), log2(γ ) 4, −9 7, −4 9, −3 11, −7

Mean F1 (%) 85.0 87.5 88.6 81.0

The table shows the mean F score values for all kernel function types
obtained during fivefold cross-validation, as well as related values of C
and γ parameters

abstract, keywords, journal, volume, issue, pages range, year
and DOI.

The phase contains two steps:

1. Metadata zone classification (B1)—assigning specific
metadata classes to metadata zones, described in detail
in Sect. 4.2.

2. Metadata extraction (B2)—extracting atomic informa-
tion from labelled zones.

During the last step (B2), a set of simple heuristic-based
rules is used to perform the following operations:

– zones labelled as abstract are concatenated,
– as type is often specified just above the title, it is removed
from the title zone if needed (based on a dictionary of
types),

– authors, affiliations and keywords lists are split with the
use of a list of separators,

– affiliations are associated with authors based on indexes
and distances,

– email addresses are extracted from correspondence and
affiliation zones using regular expressions,

– email addresses are associated with authors based on
author names,

– pages ranges placed directly in bib_info zones are parsed
using regular expressions,

– if there is no pages range given explicitly in the document,
we also try to retrieve it from the pages numbers on each
page,

– dates are parsed using regular expressions,
– journal, volume, issue and DOI are extracted from

bib_info zones based on regular expressions.

4.4 Bibliography extraction

The goal of bibliography extraction is to extract a list of bib-
liographic references with their metadata (including author,
title, source, volume, issue, pages and year) from zones
labelled as references.

Bibliography extraction path contains two steps:

1. Reference strings extraction (C1)—dividing the content
of references zones into individual reference strings.

2. Reference parsing (C2)—extracting metadata from ref-
erence strings.

4.4.1 Extracting reference strings

References zones contain a list of reference strings, each of
which can span over one or more text lines. The goal of ref-
erence strings extraction is to split the content of those zones
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into individual reference strings. This step utilizes unsuper-
vised machine learning techniques, which allows to omit
time-consuming training set preparation and learning phases,
while achieving very good extraction results.

Every bibliographic reference is displayed in the PDFdoc-
ument as a sequence of one or more text lines. Each text line
in a reference zone belongs to exactly one reference string,
some of them are first lines of their reference, others are inner
or last ones. The sequence of all text lines belonging to bibli-
ography section can be represented by the following regular
expression:

(
<first line of a reference>
(

<inner line of a reference>*
<last line of a reference>

)?
)*

In order to group text lines into consecutive references,
first we determine which lines are first lines of their refer-
ences. A set of such lines is presented in Fig. 7. To achieve
this, we transform all lines to feature vectors and cluster them
into two sets (first lines and all the rest). We make use of
a simple observation that the first line from all references
blocks is also the first line of its reference. Thus, the cluster
containing this first line is assumed to contain all first lines.
After recognizing all first lines, it is easy to concatenate lines
to form consecutive reference strings.

For clustering lines, we use KMeans algorithm with
Euclidean distance metric. In this case K = 2, since the
line set is clustered into two subsets. As initial centroids, we

set the first line’s feature vector and the vectorwith the largest
distance to the first one. We use five features based on line
relative length, line indentation, space between the line and
the previous one, and the text content of the line (if the line
starts with an enumeration pattern, if the previous line ends
with a dot).

4.4.2 Reference strings parsing

Reference strings extracted from references zones con-
tain important reference metadata. In this step, metadata is
extracted from reference strings and the result is the list of
document’s parsedbibliographic references. The information
we extract from the strings include: author, title, source, vol-
ume, issue, pages and year. An example of a parsed reference
is shown in Fig. 8.

First a reference string is tokenized. The tokens are then
transformed into vectors of features and classified by a super-
vised classifier. Finally, the neighbouring tokens with the
same label are concatenated, the labels are mapped into final
metadata classes and the resulting reference metadata record
is formed.

The heart of the implementation is a classifier that assigns
labels to reference tokens. For better performance, the clas-
sifier uses slightly more detailed labels than the target ones:
first_name (author’s first name or initial), surname (author’s
surname), title, source (journal or conference name), volume,
issue, page_first (the lower bound of pages range), page_last
(the upper bound of pages range), year and text (for sepa-
rators and other tokens without a specific label). The token
classifier employs conditional random fields and is built on
top of GRMM and MALLET packages [35].

Fig. 7 A fragment of the references section of an article.Marked lines are the first lines of their references. After detecting these lines, the references
section content can be easily split to form consecutive references strings

Fig. 8 An example of a bibliographic reference with various metadata information highlighted using different colors, and these are in order: author,
title, journal, volume, issue, pages and year (color figure online)

123



328 D. Tkaczyk et al.

CRF classifiers are a state-of-the-art technique for cita-
tion parsing. They achieve very good results for classifying
instances that form a sequence, especially when the label of
one instance depends on the labels of previous instances.

The basic features are the tokens themselves. We use 42
additional features to describe the tokens:

– Some of them are based on the presence of a particular
character class, e.g. digits or lowercase/uppercase letters.

– Others check whether the token is a particular character
(e.g. a dot, a square bracket, a comma or a dash), or a
particular word.

– Finally, we use features checking if the token is contained
by the dictionary built from the dataset, e.g. a dictionary
of cities or words commonly appearing in the journal title.

It is worth to notice that the token’s label depends not
only on its feature vector, but also on the features of the
surrounding tokens. To reflect this in the classifier, the token’s
feature vector contains not only features of the token itself,
but also features of two preceding and two following tokens.

After token classification, fragments labelled asfirst_name
and surname are joined together based on their order to form
consecutive author names, and similarly fragments labelled
as page_first and page_last are joined together to form pages
range. Additionally, in the case of title or source labels, the
neighbouring tokens with the same label are concatenated.

The result of bibliography extraction is a list of document’s
bibliographic references in a structured form, each of which
contains the raw text as well as additional metadata.

5 Evaluation

Weperformed the evaluation of the key steps of the algorithm
and the entire extraction process as well. The ground truth
data used for the evaluation is based mainly on the resources
of PubMed Central Open Access Subset [1].

Evaluated steps include: page segmentation (Sect. 5.2),
initial and metadata zone classification (Sect. 5.3) and ref-
erence parsing (Sect. 5.4). Other steps were not directly
evaluated, mainly due to the fact that creating ground truth
datasets for them would be difficult and time-consuming.
Since all the steps affect the final extraction result, they were
all evaluated indirectly by the assessment of the performance
of the entire CERMINE system (Sect. 5.5) and the compari-
son with similar tools as well (Sect. 5.6).

5.1 Datasets preparation

Table 5 provides details about all the datasets used for the
experiments. In general, we use three types of data. Subsets
of PubMed Central were used directly to evaluate the entire

extraction workflow (metadata test set) and compare the per-
formance of CERMINE with similar systems (comparison
test set). Additionally, PMC resources served as a base for
constructing GROTOAP and GROTOAP2 datasets, which
were used for the experiments related to page segmentation
(segmentation test set) and zone classification (zone vali-
dation set and zone test set). A set used for citation parser
evaluation was build using PMC and also CiteSeer [36] and
Cora-ref [37] (citation test set).

PubMed Central Open Access Subset [1] contains life sci-
ences publications in PDF format, and their corresponding
metadata in the form of NLM JATS files. NLM files contain
a rich set of document’s metadata (title, authors, affiliations,
abstract, journal name, etc.), full text (sections, section titles,
paragraphs, tables, equations) and also document’s bibliog-
raphy. Subsets of PMC were used to: (1) evaluate the entire
metadata and references extraction workflow (metadata test
set) and (2) compare the system performancewith other tools
(comparison test set).

Unfortunately, the quality of data in ground truth NLM
JATS files varies from perfectly labelled documents to doc-
uments containing no valuable information at all. In some
cases, NLM files lack the entire sections of the document
(usually the bibliography and/or the body). Such files were
filtered out in both sets, and for evaluation we used only doc-
uments, whose metadata files contained all three important
sections: front matter, body and bibliography.

What is more, ground truth files from PMC contain only
the annotated text of the document and do not preserve geo-
metric features related to the way the text is displayed in
PDF files. As a result, PMC could not be directly used for
training and evaluation of the individual steps, such as page
segmentation and zone classification. For these tasks, we
built GROTOAP [38] and GROTOAP2 [4] datasets.

GROTOAP is a dataset of 113 documents in TrueViz for-
mat preserving not only the text content, but also geometric
features of the text and zone labels. GROTOAP was built
semi-automatically from PMC resources. First PDF docu-
ments were processed by automatic tools in order to extract
the geometric structure alongwith zone labels, and the results
were corrected manually by human experts. Since the task
of correcting the geometric structure and zone labelling of
the entire document is time-consuming, we were able to pro-
duce only a small set of documents. GROTOAP was used to
evaluate page segmentation (segmentation test set).

GROTOAP2 is a successor of GROTOAP. GROTOAP2 is
a much larger and diverse dataset, also containing informa-
tion related to the document’s text, geometric features and
zone labels. The label set in GROTOAP2 is a union of all
labels used in both zone classifiers.

GROTOAP2 was created semi-automatically using PMC
resources (Fig. 9). Our goal was to create a fairly large
dataset, useful for machine learning algorithms. Unfortu-
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Table 5 The summary of all the datasets used in the experiments

Name Source Format Content Purpose

Segmentation test set GROTOAP TrueViz 113 documents The evaluation of page segmentation
(Sect. 5.2)

Zone validation set GROTOAP2 TrueViz 100 documents containing 14,000
labelled zones, 2743 of which are
metadata zones

Zone classifiers feature selection
(Sect. 4.2.1) and SVM parameters
determination (Sect. 4.2.2)

Zone test set GROTOAP2 TrueViz 2551 documents containing 355,779
zones, 68,557 of which are metadata
zones

Zone classifiers evaluation (Sect. 5.3)
and final classifiers training

Citation test set CiteSeer, Cora-ref
and PMC

NLM JATS 4000 parsed citations (2000 from
CiteSeer and Cora-ref, 2000 from
1991 different PMC documents)

The evaluation of the references parser
(Sect. 5.4)

Metadata test set PubMed Central PDF + NLM JATS 47,983 PDF documents with
corresponding metadata records

The evaluation of the entire metadata
and bibliography extraction
workflow (Sect. 5.5)

Comparison test set PubMed Central PDF + NLM JATS 1943 PDF documents with
corresponding metadata records

The comparison of CERMINE’s
performance with the performance
of other similar tools (Sect. 5.6)

nately, an approach used for GROTOAP would not allow
to create a large dataset, due to the manual correction of
every document. Instead, we decided to make use of the
text labelling already present in the PMC’s NLM JATS files
to assign labels to zones automatically, while the zones
themselves were constructed using CERMINE tools. More
precisely, GROTOAP2 was created with the following steps:

1. First, PDF files from PMC were processed automatically
by CERMINE in order to extract the hierarchical geomet-
ric structure and the reading order.

2. The text content of every zone was then compared to
labelled text from NLM files with the use of Smith–
Waterman sequence alignment algorithm [39]. This
allowed to assign labels to zones.

3. Files with a lot of zones labelled as “unknown”, that is
zones, for which the labelling process was unable to find
a concrete label, were filtered out.

4. A small sample of the remaining files was inspectedman-
ually. This resulted in identifying a number of repeated
problems and errors in the dataset.

5. Based on the results of the analysis, we developed a set
of heuristic-based rules and applied them to the dataset
in order to increase the labelling accuracy.

More details about GROTOAP2 dataset and its creation
process can be found in [4].

Since GROTOAP’s creation process did not contain man-
ual correction of every document, the dataset contains errors,
caused by both segmentation and labelling steps. Segmen-
tation errors were comparatively rare. According to the
evaluation we performed on a random sample of 50 docu-
ments, the accuracy of zone labelling is 93%. Despite this

Fig. 9 Semi-automatic method of creating GROTOAP2 dataset. First
automatic tools extracted the hierarchical geometric structure and the
reading order of a document. Next, we automatically assigned labels
to zones by matching their text to labelled fragments from NLM files.
Finally, additional rules were developed manually and applied to the
dataset in order to increase the labelling accuracy. It should be noted that
since CERMINEwas not involved in the process of assigning labels, the
dataset can be used to evaluate the performance of zone classification

drawback, the lack of manual correction of every document
guaranteed the scalability of the method, which allowed to
create much larger dataset than in the case ofmore traditional
approaches.

Since CERMINE was not involved in the process of
assigning labels, subsets of GROTOAP2 could be used for
the experiments with zone classification: feature selection
and SVM parameters adjustment (zone validation set), and
final zone classifiers evaluation and training (zone test set).
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For reference parser evaluation, we used CiteSeer [36],
Cora-ref [37] and PubMed Central resources combined
together into a single set (citation test set).

CiteSeer and Cora-ref already contain parsed references.
Unfortunately, due to some differences in the labels used,
labels mapping had to be performed. Labels from original
datasets were mapped in the following way: title and year
remained the same; journal, booktitle, tech and type were
mapped to source; date was mapped to year. Labels author
and pages were split, respectively, into givenname and sur-
name, page_first and page_last using regular expressions.
All remaining tokens were labelled as text.

NLM files from PMC also contain parsed references.
Unfortunately, in most cases, they do not preserve the entire
reference strings from the original PDF file, and separators
and punctuation are often omitted. For this reason, the refer-
ence set was built using a similar technique as in the case of
GROTOAP2. We extracted reference strings from PDF files
using CERMINE tools and labelled them using annotated
data from NLM files.

5.2 Page segmentation

Page segmenter was evaluated using the entire GROTOAP
dataset. For each structure type (zone, line, word), we cal-
culated the overall accuracy over all documents that is the
percentage of elements correctly constructed by the algo-
rithm. An item is considered constructed correctly if it
contains exactly the same set of characters as the original
element. Since in our ground truth dataset every table and
figure is placed in one zone, and Docstrum usually divides
these (often sparse) areas intomore zones, these regionswere
excluded from the evaluation.

We performed the evaluation of two versions of the
segmentation algorithm: the original Docstrum and the algo-
rithm with the modifications listed in Sect. 4.1.2. The results
are shown in Fig. 10. For all structure types, themodifications
resulted in increased extraction accuracy.

5.3 Zone classification

Both zone classifiers were evaluated by a fivefold cross-
validation using zone test set (described in Sect. 5.1). The
Tables 6 and 7 show the confusion matrices as well as pre-
cision and recall values for individual classes for initial and
metadata classification, respectively.

For a class C , precision and recall were calculated in the
following way:

PrecisionC = |SC |
|CC | , RecallC = |SC |

|GC |
where SC is a set of zones correctly recognized as C by the
classifier, CC is a set of zones labelled as C by the classifier
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Fig. 10 The results of page segmentation evaluation. The plot shows
the accuracy of extracting zones, lines and words for the original
Docstrum algorithm and Docstrum with modifications proposed in
Sect. 4.1.2

and GC is a set of zones labelled as C in the ground truth
data.

Initial classifier achieved the following results calculated
asmean values for individual classes: precision 97.2%, recall
95.4%, F score 96.3%. The results achieved by metadata
classifier were as follows: precision 95.4%, recall 95.1%, F
score 95.3%.

We also compared the performance of the classification
obtained from our two classifiers executed in sequence with
one combined classifier, which assigns both general cate-
gories and specific metadata classes (more details about the
two approaches and the decision to use two classification
steps instead of one can be found in Sect. 4.2). The com-
bined classifier achieved 95.1%accuracy and 85.2%mean F
score, while two separate classifiers working together (the
current solution) achieved 95.3% accuracy and 85.9% F
score. The performance of these approaches is thus very sim-
ilar to each other.

5.4 Reference parsing

Bibliographic reference parser was evaluated with the use of
a fivefold cross-validation on the citation test set (described
in Sect. 5.1). For every metadata class, we computed pre-
cision and recall in a similar way as in the case of zone
classification. This time the objects in SC , CC and GC sets
were not individual tokens, but entire reference substrings.
As a consequence, a token correctly labelled with a class C
contributes to the overall success rate only if the entire token
sequence of class C containing the given token is correctly
labelled.
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Table 6 Confusion matrix for
initial classification for fivefold
cross-validation

Metadata Body References Other Precision (%) Recall (%)

Metadata 66,042 2181 75 259 96.6 96.3

Body 1551 232,464 177 934 97.9 98.9

References 47 806 17,489 67 98.2 95.0

Other 733 2118 65 30,771 96.1 91.3

Rows and columns represent the desired and obtained classification result, respectively
Bold values on the main matrix diagonal are the numbers of correctly classified zones of respective classes

Figure 11 shows precision and recall values for individual
metadata classes. The parser achieved the following scores
calculated as mean values for individual classes: precision
92.9%, recall 93.8%, F score 93.3%.

5.5 Metadata extraction evaluation

The evaluation of the entireworkflowwas performedwith the
use ofmetadata test set (described in Sect. 5.1). The PDFfiles
were processed by CERMINE and the resulting metadata
(the “tested” documents) was compared to metadata stored
in NLM files (the “ground truth” documents).

For each type of metadata, we used different measures of
correctness. In general, we deal with two types of metadata
fields: those that appear atmost once per document (these are:
title, abstract, journal, volume, issue, pages range, year and
DOI) and those present as lists (authors, affiliations, email
addresses, keywords and bibliographic references).

In the first case, for every document, a single string from
NLM file was compared to the extracted string, which gives
a binary output: information extracted correctly or not. The
overall precision and recall scores for a metadata class C are
calculated in the following way:

PrecisionC = |SC |
|CC | , RecallC = |SC |

|GC |
where SC is a set of documents from which the non-empty
information of a class C was correctly extracted, CC is a
set of tested documents with non-empty field of class C , and
finally GC is a set of ground truth documents with non-empty
field of class C .

Some information types from this group, such as article’s
volume, issue, DOI, dates and pages, were considered cor-
rect only if exactly equal to NLM data. As the journal name
is often abbreviated, we marked it as correct if it was a sub-
sequence of the ground truth journal name. Article’s title
and abstract were tokenized and compared with the use of
Smith–Waterman sequence alignment algorithm [39].

In the case of list metadata types, for every document
the elements of tested and ground truth lists were compared
using cosine distance. This resulted in individual precision
and recall for every document. The overall precision and
recall were computed as mean values over all documents.

In the case of bibliographic references, only their full text
was compared, and the detailed metadata was ignored.

The evaluation results are shown in Fig. 12. CERMINE
achieved the following results calculated as mean values for
individual metadata classes: precision 81.0%, recall 74.7%,
F score 77.5%.

5.6 Comparison evaluation

Comparison test set (described in Sect. 5.1) was used to com-
pare the performance of CERMINE with similar extraction
systems. The results are shown in Table 8. The evaluation
methodology was the same as before, with the exception of
ParsCit system. Since ParsCit analyses only the text content
of a document, PDF files were first transformed to text using
pdftotext tool. What is more, the output of ParsCit can
contain multiple titles or abstracts; thus, for this system, all
metadata classes were treated as list types.

For most metadata classes, CERMINE performs the best.
Theworst values were obtained in the case of ParsCit system,
which was probably caused by the fact that the algorithm
inspects only the text content of a documents, ignoring hints
related to the way the text is displayed in the PDF file.

5.7 Error analysis

The errors made by the extraction workflow can be divided
into two groups: metadata was not extracted or the extracted
information is incorrect. The majority of errors happen in the
following situations:

– When two (ormore) zoneswith different roles in the docu-
ment are placed close to each other, they are often merged
together by the segmenter. In this case, the classification
is more difficult and by design only one label is assigned
to such a hybrid zone. A potential solution would be to
introduce additional labels for pairs of labels that often
appear close to each other, for example title_author or
author_affiliation, and split the content of such zones later
in the workflow.

– The segmenter introduces other errors as well, such as
incorrectly attaching an upper index to the line above the
current line, ormerging textwritten in two columns. These
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Fig. 11 Bibliographic reference parser evaluation. The figure shows
precision and recall values for extracting reference fragments belonging
to individual metadata classes. A given fragment is considered correctly
extracted, if it is identical to the ground truth data

Fig. 12 The evaluation results of CERMINE’s extraction process on
metadata test set. The figure shows precision and recall values for indi-
vidual metadata classes

errors can be corrected by further improvement of the page
segmenter.

– Zone classification errors are also responsible for a lot of
extraction errors. These errors can be improved by adding
training instances to the training set and improving the
labelling accuracy in GROTOAP2.

– Sometimes themetadata, usually keywords, volume, issue
or pages, is not explicitly given in the input PDF file.
Since CERMINE analyses the PDF file only, such infor-
mation cannot be extracted. This is in fact not an extraction
error. Unfortunately, since ground truthNLMdata in PMC
usually contains such information, whether it is writ-
ten in the PDF or not, these situations also contribute
to the overall error rates (equally for all evaluated sys-
tems).

123



CERMINE: automatic extraction of structured metadata from scientific literature 333

Table 8 The results of
comparing the performance of
various metadata extraction
systems

CERMINE PDFX GROBID ParsCit Pdf-extract

Title 95.5 85.7 82.5 34.1 49.4

93.4 84.7 77.4 39.6 49.4

94.5 85.2 79.8 36.6 49.4

Authors 90.2 71.2 85.9 57.9 –

89.0 71.5 90.5 48.6 –

89.6 71.3 88.1 52.8 –

Affiliations 88.2 – 90.8 72.2 –

83.1 – 51.8 44.3 –

85.6 – 66.0 54.9 –

Email addresses 51.7 53.0 26.9 28.8 –

42.6 73.6 7.8 36.2 –

46.7 61.6 12.1 32.1 –

Abstract 82.8 71.1 70.4 47.7 –

79.9 66.7 67.7 61.3 –

81.3 68.8 69.0 53.7 –

Keywords 89.9 – 94.2 15.6 –

63.5 – 44.2 3.0 –

74.4 – 60.2 5.1 –

Journal 80.3 – – – –

73.2 – – – –

76.6 – – – –

Volume 93.3 – – – –

83.0 – – – –

87.8 – – – –

Issue 53.7 – – – –

28.4 – – – –

37.1 – – – –

Pages 87.0 – – – –

80.4 – – – –

83.5 – – – –

Year 96.3 – 95.7 – –

95.0 – 40.4 – –

95.6 – 56.8 – –

DOI 98.2 – 99.1 – –

75.0 – 65.4 – –

85.1 – 78.8 – –

References 96.1 91.3 79.7 81.2 80.4

89.8 88.9 66.7 71.8 57.5

92.8 90.1 72.6 76.2 67.0

In every cell, the precision, recall and F score values are shown. The best results in every category are bolded

The most common extraction errors include:

– Title merged with other parts of the document, when title
zone is placed close to another region.

– Title not recognized, for example when it appears on the
second page of the PDF file.

– Title zone split by the segmenter into a few zones, and
only a subset of them is correctly classified.

– Authors zone not labelled, in that case the authors are
missing.

– Authors zone merged with other fragments, such as affil-
iations or research group name, in such cases additional
fragments appear in the authors list.
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Fig. 13 The plot shows CERMINE’s processing time (in seconds) as
a function of the number of pages of a document for a subset of 1238
documents from PMC

– Affiliation zone not properly recognized by the classifier,
for example when it not visually separated from other
zones, or placed at the end of the document. Affiliations
are missing in that case.

– The entire abstract or a part of it recognized as body by the
classifier, as a result the abstract or a part of it is missing.

– Thefirstbodyparagraph recognized incorrectly asabstract,
as a result the extracted abstract contains a fragment of the
document’s proper text.

– Bibliographic information missing from a PDF file or not
recognized by the classifiers, as a result journal name,
volume, issue and/or pages range are not extracted.

– Keywords missing because the zone was not recognized
or not included in the PDF file.

– A few of the references zones classified as body, and in
such cases some or all of the references are missing.

5.8 Processing time

The processing time of a document depends mainly on its
number of pages. The most time-consuming steps are page
segmentation and initial zone classification.

Figure 13 shows the processing time as a function of the
number of document’s pages for 1238 random documents.
The average processing time for this subset was 9.4 s.

6 Conclusions and future work

The article presents CERMINE—a system for extracting
both metadata and bibliography from scientific articles in
a born-digital form. CERMINE is very useful for digital
libraries and similar environmentswhenever theyhave to deal
with documents with metadata information missing, frag-
mentary or not reliable. Automatic extraction tools provided

by CERMINE support a number of tasks such as intelligent
searching, finding similar and related documents, building
citation and author networks, and so on.

The system is open source and available online at http://
cermine.ceon.pl. The modular architecture and the use of
supervised and unsupervised machine learning techniques
make CERMINE flexible and easy to adapt to new document
layouts. The evaluation against a large and diverse dataset
shows good results for the key individual steps and the entire
extraction workflow. For most metadata types, the results are
better than in the case of other similar extraction systems.

Our future plans include:

– extending the workflow, so that the system is able to
process documents in the form of scanned pages as well,

– expanding the workflow architecture by adding a process
path for extracting structured full text containing sections
and subsections, headers and paragraphs,

– adding affiliation parsing step, the goal of which is to
extract affiliation metadata: institution name, address and
country,

– making the citation dataset used for parser evaluation pub-
licly available.
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