
DML 2011

Łukasz Bolikowski; Piotr Jan Dendek
Towards a Flexible Author Name Disambiguation Framework

In: Petr Sojka and Thierry Bouche (eds.): Towards a Digital Mathematics Library. Bertinoro,
Italy, July 20-21st, 2011. Masaryk University Press, Brno, Czech Republic, 2011. pp. 27--37.

Persistent URL: http://dml.cz/dmlcz/702600

Terms of use:
© Masaryk University, 2011

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702600
http://project.dml.cz

Towards a Flexible Author Name Disambiguation
Framework

Łukasz Bolikowski1 and Piotr Jan Dendek1,2

1 Interdisciplinary Centre for Mathematical and Computational Modelling
University of Warsaw, ul. Pawińskiego 5A blok D, 02-106 Warsaw, Poland

2 Faculty of Electronics and Information Technology, Warsaw University of Technology
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

Abstract. In this paper we propose a flexible, modular framework
for author name disambiguation. Our solution consists of the core
which orchestrates the disambiguation process, and replaceable modules
performing concrete tasks. The approach is suitable for distributed
computing, in particular it maps well to the MapReduce framework.
We describe each component in detail and discuss possible alternatives.
Finally, we propose procedures for calibration and evaluation of the
described system.
Keywords: name disambiguation, problem decomposition, scoring
functions, single-linkage clustering, MapReduce framework, machine
learning

1 Introduction

A person’s name may be presented in several different forms, for example:
“M. Brown”, “Michael Brown”, “M. A. Brown”, “Michael A. Brown”, or
“Michael Arthur Brown”. On the other hand, the same name form may,
depending on the context, refer to several different people. Furthermore,
when processed by a computer system, a name form may be distorted due
to deficiencies of the software used, e.g. due to OCR errors, or incompatible
handling of diacritics.

In a digital library storing scientific publications, such as the European
Digital Mathematics Library (EuDML), it is of great interest to associate
the names of a document contributors with their identities. This piece of
information is crucial for several purposes, including: presentation of all the
works of a particular author in a concise form; analysis of researchers’ co-
operation network and identification of communities [12]; or assessing the
impact of individual researchers.

The problem of associating names with identities is commonly referred to
as name disambiguation. Torvik and Smalheiser [13] show that almost 2/3 of
authors in MEDLINE have an ambiguous name (surname + first initial), thus
providing a good motivation for further study.

Several approaches to the problem have been proposed in the literature.
Han et al. [4] offer two solutions based on supervised learning: one using naîve
Bayes, the other using Support Vector Machines. Mann and Yarowsky [8], as well

Petr Sojka, Thierry Bouche (editors): DML 2011, Towards a Digital Mathematics Library, pp. 27–37.
c○ Masaryk University, 2011 ISBN 978-80-210-5542-1

http://www.eudml.eu/
http://www.fi.muni.cz/usr/sojka
http://www-fourier.ujf-grenoble.fr/~bouche/
http://www.fi.muni.cz/usr/sojka/dml-2011.html

28 Łukasz Bolikowski, Piotr Jan Dendek

as Pedersen et al. [11] and Han et al. [5] propose various unsupervised clustering
approaches. Kang et al. [7] stress the importance of co-authorship analysis in
the name disambiguation process. Torvik and Smalheiser [13] propose a 5-step
procedure to disambiguate names in an entire collection of documents.

In related research, Galvez and Moya-Anegón [3] employ finite-state graphs
to standarize name variants, while Pavelec et al. [10] address the problem of
finding the author of an anonymous document using stylometry.

Doc

A

Doc

B

Doc

C

Doc

D

Ron Black

John Smith

A. Smith

M. Johnson

A. T. Smith

R. Black

M. Johnson

J. Smith

A#1 (Ron Black)

A#2 (John Smith)

B#1 (A. Smith)

C#2 (A. T. Smith)

D#1 (R. Black)

D#3 (J. Smith)

C#1 (M. Johnson)

D#2 (M. Johnson)

Documents Contributions Shards

Fig. 1. Documents, contributions, and shards. Decomposition of contribution space into
shards is performed according to some hash function, for example: surname of the
contributor.

A#2

B#1

C#2

D#3

A#2 B#1 C#2 D#3

Affinity scores

+2/+2/+1

-2/0/-1

-2/0/-2

+1/0/+3

-1/0/+1 -2/+2/-1

Clustering

A#2 B#1 C#2D#3

Fig. 2. For each pair of contributions within a shard, affinity is calculated based on
several attributes. Next, a clustering algorithm is executed to extract author identities.

Author Name Disambiguation 29

2 Author Name Disambiguation Framework

2.1 Vocabulary and assumptions

Let us begin by establishing a vocabulary that will be used throughout the rest
of this paper and stating certain assumptions about the objects discussed.

A document is an article or a book, referenced by an identifier that is
unique within the collection. We assume to have an access to each document’s
metadata, which at the very least contain names of all the authors.

A contribution is an occurrence of an author’s name in a document’s
metadata. Thus, a contribution refers to exactly one document and to exactly
one person. For the sake of clarity, let us identify a contribution by concatenating
the document’s identifier with “#” and with (one-based) position of the name on
the list of authors of the document. For example, if a document with identifier
124532 has three authors: J. Stone, M. Black and A. Smith, then the contribution
of M. Black to the document is identified by 124532#2.

Next, a shard is a group of contributions such that a hash function yields
the same value for all the contributions in the shard. We are free to choose any
hash function which satisfies the following condition: all the contributions of
the same person should have the same hash. The converse does not have to
be true, though: contributions of several different people may have the same
hash. A case satisfying the above conditions is shown in Figure 3. There are
contributions (visualised as “document” icons) gathered into shards (ellipses).
Papers written by the same person (“human” icon) should be in the same shard.
It may occur that papers of more then one person will appear in the same
shard, which is valid and expected. The described situation is the result of a
well-constructed hash function. In contrast, shards in Figure 4 are the result of
a defective hash function, which splits contributions of same person into more
then one shard.

Fig. 3. Contributions (document icons)
of the same person (human icons)
should be present in the same shard
(ellipses).

Fig. 4. The result of a defective hash
function is a division of contributions
(document icons) of the same person
(human icons) into different shards
(ellipses). The grey person’s papers are
split in such a manner.

30 Łukasz Bolikowski, Piotr Jan Dendek

The purpose of a hash function is to decompose the problem space into
manageable shards. A good example of a hash function is a function which
returns the lower-cased surname of a name with all the diacritic marks removed
(cf. Fig. 1).

An attribute (or a feature) is a function that extracts some feature from each
contribution, such as: year of publication of the document, list of keywords in
the document, or e-mail address of the person. Such an attribute may be either
taken from the document’s metadata, or inferred from the full-text. Whenever
we write “an attribute of a contribution”, we mean the value of the attribute for
the contribution. When a given contribution lacks a given attribute, we shall
denote the value by “⊥”.

Affinity of a pair of contributions is a real number which is a measure of
our confidence that the two contributions are made by the same person. It is
a weighted sum of atomic affinities calculated for individual attributes. We
assume that for each atomic affinity is a function that returns values from the
range [−1, 1]. When returned value is equal 1 it means that according to that
function two contributions share the same personality for sure. Zero value point
out that function could not determine if contributions share the same person or
not. Finally, -1 value indicate that two contributions are made by two different
persons. The relative imporance of atomic affinities (and thus, indirectly, of
attributes) is controlled by weights, which are non-negative real numbers.

Finally, a cluster of contributions believed to be made by the same person
will sometimes be referred to as an identity.

2.2 Name disambiguation flow

Our name disambiguation procedure, presented in Figure 5, takes a collection
of documents on input, and yields sets of contributions likely to be made by
the same person on output. The procedure consists of three steps:

1. all the contributions in the input collection of documents are partitioned
into shards (cf. Figure 1);

2. for each pair of contributions within each shard, its affinity is calculated (cf.
Figure 2);

3. contributions within each shard are clustered (cf. Figure 2).

As a result of the last step, we have groups of contributions suspected to
be made by the same person. The entire solution maps well to the Google’s
MapReduce framework [2].

Each part of the process is described in the following part of the article.

2.3 Partition of the input collection

The problem domain of name disambiguation is typically in the order of
millions of contributions. Since a part of our solution employs pairwise
comparison (quadratic computational complexity), it is crucial to decompose
the domain beforehand, thus reducing the computational effort.

Author Name Disambiguation 31

Fig. 5. Name disambiguation procedure stages. Puzzles represent replaceable parts of
the solution.

When looking for same authorship of contributions, it is also apparent that
some contributions do not need to be compared (e.g. they were written in time
interval of two hundred years). Using this information, we can extract from the
collection a working set of interest, in which documents are similar in some
way, simultaneously filtering out other contributions, unlikely to be made by
the same author.

For the sake of simplicity, one can restrict our attention to filters which
partition the contributions into disjunctive working sets. Let us call such filters
“hash functions”, and the resulting working sets—“shards”.

The framework is flexible and allows us to plug in any hash function
satisfying the conditions stated in Subsection 2.1. We have chosen a basic hash
function which takes the surname, lower-cases it, and removes all the diacritic
marks.

Torvik and Smalheiser [13] found that misspellings, differences in authors’
surnames notations or differences of complete surnames (e.g., “Olle Goig” vs.
“Olle-Goig”, “Le Roith” vs. “LeRoith”, or “J. Benson” and “J. Flynn” both
referring to Judy Benson Flynn) appear in approximately 1.8% of contributions.
Moreover, the hash function described earlier is resilient to the majority of these
discrepancies. Therefore, we have decided to ignore such mistakes.

However, if one chooses to account for misspellings, it can be achieved
by using a more sophisticated hash function, for example one feeding the
surname to the Soundex algorithm. (although differences in pronunciation
across countries may spoil the result). It is not advised to use editorial distance,
because in this case shards may overlap. Another way to extend the basic hash
function is to include the initial of the first name in the hash and removing
non-alphabetic characters (e.g.dashes) and diacritic marks from a surname. The
biggest disadvantage of the described hash function is that it works well with
surnames written with Latin alphabet. If one needs to proceed surnames written
in different alphabets, they may write appropriated function to translate them
into same alphabet representation. Whereas if one works on a set of surnames
written in same alphabet, they do not need to employ any sophisticated surname

32 Łukasz Bolikowski, Piotr Jan Dendek

translation function. On a side note, this illustrates the flexibility of the proposed
framework.

The final product of the partition performed using the basic hash function
is a large number of small shards and a small number of larger shards. In the
collection of Polish History Museum (about 100 thousand documents, mostly
arts and humanities), we have found that roughly 55% of all contributions
are in shards of size 10 or less, while the largest shard was in the order of a
thousand. In MEDLINE (over 15 million documents, mostly life science) when
using surname + initial of the first name as the hash, Torvik and Smalheiser [13]
found that the largest shard (“J. Lee”) contains almost 16 thousand contributions.
Given this order of magnitude of shard sizes, it is feasible to run an analysis of
quadratic time complexity on each of the shards.

To sum up, the described decomposition of contributions dramatically
reduces the computational complexity of the second step in the procedure. As
an added benefit, the individual shards can be processed in parallel, further
reducing the wall-clock time of the entire process.

2.4 Pairwise contribution comparison
Once the domain is decomposed into shards, we need to establish affinities
of pairs of contributions in each shard. The total affinity is the sum of atomic
affinities, assessed from an extensible set of features (a list of feature examples
is presented in Table 1 on the next page).

A feature is a method, which takes two contributions on input and returns
a real number from the [−1, 1] range. The resulting number is multiplied by
the weight of the feature, giving an atomic affinity. Finally, atomic affinities are
summed up to one number—total affinity.

For each shard, the output of the procedure is a matrix of contribution
affinities. The matrix is passed to the next stage of the name disambiguation
process.

Feature weight Some features, such as e-mail, can alone prove that two
contributions share the same identity. Other features are only weak indicators,
e.g. contributing to the same journal. The weight of a feature is introduced to
reflect the feature’s impact on the name disambiguation process.

Feature aspects Referring to the Table 1 we can point out a few aspects of a
feature:

– Discretization level
1. Discrete. Some features are highly discrete, e.g. e-mail feature.
2. Continuous. Some features give a continuous result, e.g. continuous

time distance feature.
– Polarisation level

1. Polarised. A feature can be highly positive (negative) indicator and
simultaneously weak negative (positive) indicator, e.g. e-mail or journal
feature.

Author Name Disambiguation 33

Table 1. The list of the feature examples

Name Description

Time distance
(continuous) =


0 year(c1) = ⊥

∨ year(c2) = ⊥
−1 |year(c1) − year(c2)| > 70

1 −
(

year(c1)−year(c2)
70

)2
otherwise

Time distance
(discrete) =


0 year(c1) = ⊥∨ year(c2) = ⊥
−1 |year(c1) − year(c2)| > 70
1 otherwise

Journal =


0 journal(c1) = ⊥∨ journal(c2) = ⊥
1 journal(c1) = journal(c2)

−0.1 otherwise

Email =


0 email(c1) = ⊥∨ email(c2) = ⊥
1 email(c1) = email(c2)

−0.1 otherwise

Language =


0 language(c1) = ⊥∨ language(c2) = ⊥

0.05 language(c1) = eng∨ language(c2) = eng
0.1 language(c1) = language(c2)
−1 otherwise

Keywords
(discrete) =


0 keyword(c1) = ∅∨ keyword(c2) = ∅
−1 |keyword(c1)∩keyword(c2)|

|keyword(c1)∪keyword(c2)|
< 0.25

1 otherwise

Keywords
(continuous) =


0 keyword(c1) = ∅

∨keyword(c2) = ∅
|keyword(c1)∩keyword(c2)|
|keyword(c1)∪keyword(c2)|

∗ 2 − 1 otherwise

Self-citation =

{
1 name(c1) = name(reference(c1))
0 otherwise

Co-authorship =


0.7 | coauthors(c1) ∩ coauthors(c2)| = 1
1 | coauthors(c1) ∩ coauthors(c2)| > 1
0 otherwise

34 Łukasz Bolikowski, Piotr Jan Dendek

2. Fair. A feature can be equally important as positive and negative
indicator, e.g. discrete time distance features.

– Structure
1. Flat structure. A feature can focus on two documents connected to

given contributor, e.g. year feature.
2. Graph structure. A feature can check connections between larger

quantity of documents, e.g. co-authorship, self-citation features.

One of advantages of the framework is a possibility of flexible feature addition
and weight assignation, thanks to the usage of Spring Framework. The only
restriction is that feature methods must be written in Java programming
language.

2.5 Clustering process

Last part of the name disambiguation process is clusterization of contributors
based on similarity matrix obtained in the previous step. As previously, one can
use specially prepared clusterizer to reach desired result. In our case, we decide
to use Single-linkage Hierarchical Agglomerative Clustering (described in [9])
with customization. This algorithm takes in each step two “active” contributors
with top level score. If this score is below a given threshold (referred as T)
the procedure is ended. Otherwise similarity level of contributions (σ) is
recalculated in following manner:

∀1<i<N∀i̸=a∀i̸=bσ(ca, ci) = σ(cb, ci) =


−∞ σ(ca, ci) < T

∨σ(cb, ci) < T
σ(ca, ci) σ(ca, ci) > σ(cb, ci)
σ(cb, ci) σ(ca, ci) 6 σ(cb, ci)

(1)

After recalculation, one of the contributors is deactivated. The process is
repeated till either threshold is reached or there is only one active contributor
left.

We choose simple-linkage clustering because it has desirable behaviour.
If A is close to B, which is close to C, then merging A and B does not set
the merged cluster further apart from C (which may be the case in Complete
Link Clustering). Moreover, this type of clusterization provides O(N2) time
complexity, which is well acceptable. However, in other approaches other
clusterizers can be applied. In Figure 6 one can see an example of how the
customized Single-Linkage Clusterizer works.

2.6 Framework structure

Each part of the name disambiguation framework is written in Java program-
ming language, with usage of Spring Framework and Sesame RDF Store. Thanks
to usage of Spring Framework one can easily add their own elements of solution
or replace them. Sesame RDF Query Language (SeRQL), in which database
queries are written, is designed to support operations over graph structures.

Author Name Disambiguation 35

Fig. 6. Example of customized single-linkage clustering. First step is finding biggest
affinity of two components in the affinity matrix. Then, if the value is negative
clusterizing process is ended, whereas when the value is positive, contributions are
merged into the same cluster. Affinities of the new cluster and other contributions or
clusters are calculated based on recently taken components according to Equation 1.

2.7 Distributed computation

The presented framework is well-suited for distributed computation. Each shard
is processed independently from all the others, and thus each can be processed
on a different computing node.

The entire process can be implemented using Google’s MapReduce [2]. In
the “map” phase, for each document all its contributions are emitted, with the
result of the hash function as the key. In the “reduce” phase, all the contributions
with the same key, i.e. with the same hash function (a shard!) are processed
together. Therefore, affinity assessment and clusterization are both performed
during the “reduce” phase.

3 Future Work

3.1 Training and evaluation

We have developed evaluation tools for measuring precision and accuracy of the
framework output for a range of parameters. We are currently implementing
a supervised learning algorithm (AdaBoost [6]) to automatically calibrate the
weights associated with atomic affinities. However, we need an authority file to
compare the results produced by our framework with the reality. Thanks to our

36 Łukasz Bolikowski, Piotr Jan Dendek

co-operation with Zentralblatt MATH, we have recently obtained a high-quality
authority file for the purpose of training and evaluating our framework.

3.2 Attributes from motifs

Another direction of framework extension is automatic feature generation,
including weights. This approach is based on search for graph sequences with
Apriori [1] algorithm. One of stages in Apriori algorithm is check of support
and confidence coefficient, which can be treated as weight. A closer look at
the support coefficient helps us determine how discriminative an indicator is.
Does it generally give positive (negative) weights, or only to contributions of
the same author?

4 Summary

We have presented a framework for author name disambiguation in a collection
of documents. The framework has three “degrees of freedom” (cf. Figure 5 on
page 31): one may freely choose a hash function, feature functions together
with their weights, and a clusterization function.

We were primarily interested in presenting the framework itself: establish-
ing a vocabulary, defining components and their roles, defining workflows,
proposing evaluation procedures. Presenting or evaluating a particular instance
of the framework was not our goal. Nevertheless, we did hint at possible imple-
mentations of the individual components of the framework, and we outlined a
plan of evaluation of an implementation that is currently under way at ICM.

The presented solution might be integrated into the European Digital
Mathematics Library (EuDML) to handle contributions that are not present in
the Zentralblatt MATH authority file.

Acknowledgements. EuDML project is partly financed by the European Union
through its Competitiveness and Innovation Programme (Information and
Communications Technologies Policy Support Programme, “Open access to
scientific information”, Grant Agreement No. 250503).

The authors would like to thank Zentralblatt MATH for providing
their authority file for the purpose training and evaluation of our name
disambiguation module, and the anonymous reviewers for their valuable
comments.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. 20th

Int. Conf. Very Large Data Bases, VLDB. vol. 1215, pp. 487–499. Citeseer (1994).
2. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.

Communications of the ACM 51(1), 1–13 (2004).

http://www.eudml.eu/
http://www.zentralblatt-math.org/zmath/
http://www.eudml.eu/
http://www.zentralblatt-math.org/zmath/

Author Name Disambiguation 37

3. Galvez, C., Moya-Anegón, F.: Approximate personal name-matching through
finite-state graphs. Journal of the American Society for Information Science and
Technology 58(13), 1960–1976 (Nov 2007).

4. Han, H., Giles, L., Zha, H., Li, C., Tsioutsiouliklis, K.: Two supervised learning
approaches for name disambiguation in author citations. Proceedings of the 2004
joint ACM/IEEE conference on Digital libraries – JCDL ’04, p. 296 (2004).

5. Han, H., Zha, H., Giles, C.L.: Name disambiguation in author citations using a K-
way spectral clustering method. In: JCDL ’05: Proceedings of the 5th ACM/IEEE-CS
joint conference on Digital libraries. pp. 334–343. ACM, New York, NY, USA (2005).

6. Hastie, T., Tibshirani, R., Friedman, J.: Elements of Statistical Learning. Springer
(2009).

7. Kang, I., Na, S., Lee, S., Jung, H., Kim, P., Sung, W., Lee, J.: On co-authorship for
author disambiguation. Information Processing & Management 45(1), 84–97 (Jan
2009).

8. Mann, G. S., Yarowsky, D.: Unsupervised personal name disambiguation. In:
Proceedings of the seventh conference on Natural language learning at HLT-NAACL
2003. pp. 33–40. Association for Computational Linguistics, Morristown, NJ, USA
(2003).

9. Manning, C., D., Raghavan P., Schütze, H.: Introduction to Information Retrieval.
(2008).

10. Pavelec, D., Oliveira, L. S., Justino, E., Nobre Neto, F. D., Batista, L. V.: Compression
and stylometry for author identification. 2009 International Joint Conference on Neural
Networks, pp. 2445–2450 (Jun 2009).

11. Pedersen, T., Kulkarni, A., Angheluta, R., Kozareva, Z., Solorio, T.: An unsupervised
language independent method of name discrimination using second order co-
occurrence features. pp. 208–222 (2006).

12. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extraction and mining
of academic social networks. In: Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 990–998. ACM (2008).

13. Torvik, V. I., Smalheiser, N. R.: Author name disambiguation in MEDLINE. ACM
Transactions on Knowledge Discovery from Data 3(3), 1–29 (Jul 2009).

		webmaster@dml.cz
	2012-08-27T16:41:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

