195 research outputs found

    Decoupling and Control of Real and Reactive Power in Grid-Connected Photovoltaic Power System

    Get PDF
    The paper presents a detailed modeling and simulation of different control schemes of the real and reactive power flows in a three-phase voltage source inverter (VSI) interfacing a photovoltaic (PV) generation system to the power grid. Synchronisation of the inverter and grid AC waveforms is achieved using a phase-locked-loop (PLL) circuit. An effective decoupling strategy based on proportional-integral (PI) controllers is designed to eliminate the interaction between the two current components. Finally, the influence of the grid disturbances on the PV system and the influence of the solar energy intermittency on the power grid have been tested. The overall model is implemented in Matlab and Simulink/SimPowerSystems toolboxes. Simulations results with the PV system operating with real irradiance data will be presented to demonstrate the performance of the proposed decoupling and control strategies under different conditions of the power gridNon peer reviewe

    Enhanced Electric Vehicle Integration in the UK Low Voltage Networks with Distributed Phase Shifting Control

    Get PDF
    Electric vehicles (EV) have gained global attention due to increasing oil prices and rising concerns about transportation-related urban air pollution and climate change. While mass adoption of EVs has several economic and environmental benefits, large-scale deployment of EVs on the low-voltage (LV) urban distribution networks will also result in technical challenges. This paper proposes a simple and easy to implement single-phase EV charging coordination strategy with three-phase network supply, in which chargers connect EVs to the less loaded phase of their feeder at the beginning of the charging process. Hence, network unbalance is mitigated and, as a result, EV hosting capacity is increased. A new concept, called Maximum EV Hosting Capacity (HC max) of low voltage distribution networks, is introduced to objectively assess and quantify the enhancement that the proposed phase-shifting strategy could bring to distribution networks. The resulting performance improvement has been demonstrated over three real UK residential networks through a comprehensive Monte Carlo simulation study using Matlab and OpenDSS tools. With the same EV penetration level, the under-voltage probability was reduced in the first network from 100% to 54% and in the second network from 100% to 48%. Furthermore, percentage voltage unbalance factors in the networks were successfully restored to their original values before any EV connection.Peer reviewedFinal Accepted Versio

    Optimised Residential Loads Scheduling Based on Dynamic Pricing of Electricity : A Simulation Study

    Get PDF
    This paper presents a simulation study which addresses Demand Side Management (DSM) via scheduling and optimization of a set of residential smart appliances under day-ahead variable pricing with the aim of minimizing the customer’s energy bill. The appliances’ operation and the overall model are subject to the manufacturer and user specific constraints formulated as a constrained linear programming problem. The overall model is simulated using MATLAB and SIMULINK / SimPowerSystems basic blocks. The results comparing Real Time Pricing (RTP) and the Fixed Time Tariff (FTT) demonstrate that optimal scheduling of the residential smart appliances can potentially result in energy cost savings. The extension of the model to incorporate renewable energy resources and storage system is also discussedNon peer reviewedFinal Accepted Versio

    Demand Response Strategy Based on Reinforcement Learning and Fuzzy Reasoning for Home Energy Management

    Get PDF
    As energy demand continues to increase, demand response (DR) programs in the electricity distribution grid are gaining momentum and their adoption is set to grow gradually over the years ahead. Demand response schemes seek to incentivise consumers to use green energy and reduce their electricity usage during peak periods which helps support grid balancing of supply-demand and generate revenue by selling surplus of energy back to the grid. This paper proposes an effective energy management system for residential demand response using Reinforcement Learning (RL) and Fuzzy Reasoning (FR). RL is considered as a model-free control strategy which learns from the interaction with its environment by performing actions and evaluating the results. The proposed algorithm considers human preference by directly integrating user feedback into its control logic using fuzzy reasoning as reward functions. Q-learning, a RL strategy based on a reward mechanism, is used to make optimal decisions to schedule the operation of smart home appliances by shifting controllable appliances from peak periods, when electricity prices are high, to off-peak hours, when electricity prices are lower without affecting the customer’s preferences. The proposed approach works with a single agent to control 14 household appliances and uses a reduced number of state-action pairs and fuzzy logic for rewards functions to evaluate an action taken for a certain state. The simulation results show that the proposed appliances scheduling approach can smooth the power consumption profile and minimise the electricity cost while considering user’s preferences, user’s feedbacks on each action taken and his/her preference settings. A user-interface is developed in MATLAB/Simulink for the Home Energy Management System (HEMS) to demonstrate the proposed DR scheme. The simulation tool includes features such as smart appliances, electricity pricing signals, smart meters, solar photovoltaic generation, battery energy storage, electric vehicle and grid supply.Peer reviewe

    Demand-Response Based Energy Advisor for Household Energy Management

    Get PDF
    Home energy management systems (HEMS) are set to play a key role in the future smart grid (SG). HEMS concept enables residential customers to actively participate in demand response programs (DR) to control their energy usage, reduce peak demand and therefore contribute to improve the performance and reliability of the grid. The aim of this paper is to propose an energy management strategy for residential end-consumers. In this framework, a demand response strategy is developed to reduce home energy consumption. The proposed algorithm seeks to minimise peak demand by scheduling household appliances operation and shifting controllable loads during peak hours, when electricity prices are high, to off-peak periods, when electricity prices are lower without affecting the customer’s preferences. The overall system is simulated using MATLAB/Simulink and the results demonstrate the effectiveness of the proposed control strategy in managing the daily household energy consumption.Peer reviewe

    The Shoe Shiners\u27

    Get PDF

    Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer

    Get PDF
    A stabilizing observer-based control algorithm for an in-wheel-motored vehicle is proposed, which generates direct yaw moment to compensate for the state deviations. The control scheme is based on a fuzzy rule-based body slip angle (beta) observer. In the design strategy of the fuzzy observer, the vehicle dynamics is represented by Takagi-Sugeno-like fuzzy models. Initially, local equivalent vehicle models are built using the linear approximations of vehicle dynamics for low and high lateral acceleration operating regimes, respectively. The optimal beta observer is then designed for each local model using Kalman filter theory. Finally, local observers are combined to form the overall control system by using fuzzy rules. These fuzzy rules represent the qualitative relationships among the variables associated with the nonlinear and uncertain nature of vehicle dynamics, such as tire force saturation and the influence of road adherence. An adaptation mechanism for the fuzzy membership functions has been incorporated to improve the accuracy and performance of the system. The effectiveness of this design approach has been demonstrated in simulations and in a real-time experimental settin

    Optimal control design for robust fuzzy friction compensation in a robot joint

    Get PDF
    This paper presents a methodology for the compensation of nonlinear friction in a robot joint structure based on a fuzzy local modeling technique. To enhance the tracking performance of the robot joint, a dynamic model is derived from the local physical properties of friction. The model is the basis of a precompensator taking into account the dynamics of the overall corrected system by means of a minor loop. The proposed structure does not claim to faithfully reproduce complex phenomena driven by friction. However, the linearity of the local models simplifies the design and implementation of the observer, and its estimation capabilities are improved by the nonlinear integral gain. The controller can then be robustly synthesized using linear matrix inequalities to cancel the effects of inexact friction compensation. Experimental tests conducted on a robot joint with a high level of friction demonstrate the effectiveness of the proposed fuzzy observer-based control strategy for tracking system trajectories when operating in zero-velocity regions and during motion reversals

    Modeling and Control of a UPFC System Using Pole-Placement and Hinf Robust Control Techniques

    Get PDF
    This is an open access article distributed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/FACTS (Flexible AC Transmission Systems) technology has now been accepted as a potential solution to the stability problem and load flow. The Unified Power Flow Controller (UPFC) is considered to be the most powerful and versatile among all FACTS devices. This paper presents the modeling and control of a UPFC system using pole-placement and H robust control techniques. A simulation study using Matlab/Simulink is presented to compare the performance of these control strategies and their robustness with respect to variations is the system parameters such as the inductance of the transmission line.Peer reviewe

    Grid Power Quality Enhancement Using Fuzzy Control-Based Shunt Active Filtering

    Get PDF
    Active filtering has proved efficient for the mitigation of harmonics in distribution grids. This paper deals with the design of fuzzy control strategies for a three-phase shunt active filter to enhance the power quality via the regulation of the DC bus voltage of the distribution network. The proposed control scheme is based on Interval Type 2 Fuzzy Logic controller. A simulation study is performed under Simulink/Matlab to evaluate the performance and robustness of the proposed control schemePeer reviewedFinal Accepted Versio
    • 

    corecore