29 research outputs found

    Does replication groups scoring reduce false positive rate in SNP interaction discovery?

    Get PDF
    BACKGROUNG. Computational methods that infer single nucleotide polymorphism (SNP) interactions from phenotype data may uncover new biological mechanisms in non-Mendelian diseases. However, practical aspects of such analysis face many problems. Present experimental studies typically use SNP arrays with hundreds of thousands of SNPs but record only hundreds of samples. Candidate SNP pairs inferred by interaction analysis may include a high proportion of false positives. Recently, Gayan et al. (2008) proposed to reduce the number of false positives by combining results of interaction analysis performed on subsets of data (replication groups), rather than analyzing the entire data set directly. If performing as hypothesized, replication groups scoring could improve interaction analysis and also any type of feature ranking and selection procedure in systems biology. Because Gayan et al. do not compare their approach to the standard interaction analysis techniques, we here investigate if replication groups indeed reduce the number of reported false positive interactions. RESULTS. A set of simulated and false interaction-imputed experimental SNP data sets were used to compare the inference of SNP-SNP interactions by means of replication groups to the standard approach where the entire data set was directly used to score all candidate SNP pairs. In all our experiments, the inference of interactions from the entire data set (e.g. without using the replication groups) reported fewer false positives. CONCLUSIONS. With respect to the direct scoring approach the utility of replication groups does not reduce false positive rates, and may, depending on the data set, often perform worse

    Data Mining: Lecture notes

    Get PDF
    This material contents the "handouts" given to students for data mining lecture held at the Department of Health Informatics at the University of Kyoto in July 2010. The informality of the "course", which took five two-hour lectures is reflected in informality of this text, too, as it even includes references to discussions at past lectures and so on. Some more material is available at http://www.ailab.si/janez/kyoto

    Concurrent software architectures for exploratory data analysis

    Get PDF
    Decades ago, increased volume of data made manual analysis obsolete and prompted the use of computational tools with interactive user interfaces and rich palette of data visualizations. Yet their classic, desktop-based architectures can no longer cope with the ever-growing size and complexity of data. Next-generation systems for explorative data analysis will be developed on client–server architectures, which already run concurrent software for data analytics but are not tailored to for an engaged, interactive analysis of data and models. In explorative data analysis, the key is the responsiveness of the system and prompt construction of interactive visualizations that can guide the users to uncover interesting data patterns. In this study, we review the current software architectures for distributed data analysis and propose a list of features to be included in the next generation frameworks for exploratory data analysis. The new generation of tools for explorative data analysis will need to address integrated data storage and processing, fast prototyping of data analysis pipelines supported by machine-proposed analysis workflows, preemptive analysis of data, interactivity, and user interfaces for intelligent data visualizations. The systems will rely on a mixture of concurrent software architectures to meet the challenge of seamless integration of explorative data interfaces at client site with management of concurrent data mining procedures on the servers

    Concurrent software architectures for exploratory data analysis

    Get PDF
    Decades ago, increased volume of data made manual analysis obsolete and prompted the use of computational tools with interactive user interfaces and rich palette of data visualizations. Yet their classic, desktop-based architectures can no longer cope with the ever-growing size and complexity of data. Next-generation systems for explorative data analysis will be developed on client–server architectures, which already run concurrent software for data analytics but are not tailored to for an engaged, interactive analysis of data and models. In explorative data analysis, the key is the responsiveness of the system and prompt construction of interactive visualizations that can guide the users to uncover interesting data patterns. In this study, we review the current software architectures for distributed data analysis and propose a list of features to be included in the next generation frameworks for exploratory data analysis. The new generation of tools for explorative data analysis will need to address integrated data storage and processing, fast prototyping of data analysis pipelines supported by machine-proposed analysis workflows, preemptive analysis of data, interactivity, and user interfaces for intelligent data visualizations. The systems will rely on a mixture of concurrent software architectures to meet the challenge of seamless integration of explorative data interfaces at client site with management of concurrent data mining procedures on the servers

    Does replication groups scoring reduce false positive rate in SNP interaction discovery?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computational methods that infer single nucleotide polymorphism (SNP) interactions from phenotype data may uncover new biological mechanisms in non-Mendelian diseases. However, practical aspects of such analysis face many problems. Present experimental studies typically use SNP arrays with hundreds of thousands of SNPs but record only hundreds of samples. Candidate SNP pairs inferred by interaction analysis may include a high proportion of false positives. Recently, Gayan et al. (2008) proposed to reduce the number of false positives by combining results of interaction analysis performed on subsets of data (replication groups), rather than analyzing the entire data set directly. If performing as hypothesized, replication groups scoring could improve interaction analysis and also any type of feature ranking and selection procedure in systems biology. Because Gayan et al. do not compare their approach to the standard interaction analysis techniques, we here investigate if replication groups indeed reduce the number of reported false positive interactions.</p> <p>Results</p> <p>A set of simulated and false interaction-imputed experimental SNP data sets were used to compare the inference of SNP-SNP interactions by means of replication groups to the standard approach where the entire data set was directly used to score all candidate SNP pairs. In all our experiments, the inference of interactions from the entire data set (e.g. without using the replication groups) reported fewer false positives.</p> <p>Conclusions</p> <p>With respect to the direct scoring approach the utility of replication groups does not reduce false positive rates, and may, depending on the data set, often perform worse.</p

    GenePath: from mutations to genetic networks and back

    Get PDF
    GenePath is a web-based application for the analysis of mutant-based experiments and synthesis of genetic networks. Here, we introduce GenePath and describe a number of new approaches, including conflict resolution, handling cyclic pathways, confidence level assignment, what-if analysis and new experiment proposal. We illustrate the key concepts using data from a study of adhesion genes in Dictyostelium discoideum and show that GenePath discovered genetic interactions that were ignored in the original publication. GenePath is available at

    Open-source tools for data mining

    Get PDF
    With a growing volume of biomedical databases and repositories, the need to develop a set of tools to address their analysis and support knowledge discovery is becoming acute. The data mining community has developed a substantial set of techniques for computational treatment of these data. In this article, we discuss the evolution of open-source toolboxes that data mining researchers and enthusiasts have developed over the span of a few decades and review several currently available open-source data mining suites. The approaches we review are diverse in data mining methods and user interfaces and also demonstrate that the field and its tools are ready to be fully exploited in biomedical research

    Data Mining: Lecture notes

    Get PDF
    This material contents the "handouts" given to students for data mining lecture held at the Department of Health Informatics at the University of Kyoto in July 2010. The informality of the "course", which took five two-hour lectures is reflected in informality of this text, too, as it even includes references to discussions at past lectures and so on. Some more material is available at http://www.ailab.si/janez/kyoto
    corecore