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The history of software packages for data mining is short but eventful.
Although the term data mining was coined in the mid-1990s [1], statistics,
machine learning, data visualization, and knowledge engineeringdresearch
fields that contribute their methods to data miningdwere at that time
already well developed and used for data exploration and model inference.
Obviously, software packages were in use that supported various data min-
ing tasks. But compared with the data mining suites of today, they were
awkward, most often providing only command-line interfaces and at best
offering some integration with other packages through shell scripting, pipe-
lining, and file interchange. For an expert physician, the user interfaces of
early data mining programs were as cryptic as the end of the last sentence.
It took several decades and substantial progress in software engineering and
user interface paradigms to create modern data mining suites, which offer
simplicity in deployment, integration of excellent visualization tools for
exploratory data mining, anddfor those with some programming back-
grounddthe flexibility of crafting new ways to analyze the data and adapt-
ing algorithms fit to the particular needs of the problem at hand.

Within data mining, there is a group of tools that have been developed by
a research community and data analysis enthusiasts; they are offered free of
charge using one of the existing open-source licenses. An open-source devel-
opment model usually means that the tool is a result of a community effort,
not necessary supported by a single institution but instead the result of
contributions from an international and informal development team. This
development style offers a means of incorporating the diverse experiences
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38 ZUPAN & DEMSAR
and views of multiple developers into a single platform. Open-source data
mining suites may not be as stable and visually ‘‘finished’’ as their commer-
cial counterparts but instead may offer high usefulness through alternative,
exciting, and cutting-edge interfaces and prototype implementations of the
most recent techniques. Being open source they are by definition extendable,
and may offer substantial flexibility in handling various types of data.

In the following, we provide a brief overview of the evolution of ap-
proaches used in the development of data mining suites, with a particular
focus on their user interfaces. We then elaborate on potential advantages of
open-source data mining suites as compared with their commercial counter-
parts, and provide a wish list for techniques any datamining suite should offer
to the biomedical data analyst. For our review of tools, we select several
representative data mining suites available in open source, present each
briefly, and conclude with a summary of their similarities and differences.
Evolution of open-source data mining tools

Early model inference and machine learning programs from the 1980s
were most often invoked from a command prompt (eg, from a UNIX or
DOS shell), with the user providing the name of the input data file and
any parameters for the inference algorithm. A popular classification tree
induction algorithm called C4.5 [2] came with such an implementation.
C4.5 (the source code is available at http://www.rulequest.com/Personal)
could also accept a separate input file with cases for testing the model,
but included no procedures for sampling-based evaluation of the algorithm.
Implementations of early rule-based learning algorithms, such as AQ [3] and
CN2 [4], were similar to C4.5 in this respect. Much of the experimental
verification of these programs was performed on data sets from medicine,
including those related to cancer diagnosis and prediction (see UCI Machine
Learning Repository [5]). Such evaluations most often demonstrated that
the classification rules inferred had some meaningful medical interpretation
and performed well in classification accuracy on a separate test set.

Inference of models from medical data requires elaborate testing, which
was not fully integrated into early data mining programs. Researchers typ-
ically used a scripting language, such as Perl [6], to separately implement
sampling procedures and then execute programs for model inference and
testing. To compare different algorithms, such scripts needed to reformat
the data for each algorithm, parse textual outputs from each model, and
use them to compute the corresponding performance scores. Needless to
say, the implementation of such schemata required a substantial amount
of programming and text processing.

As an alternative, several research groups started to develop suites of
programs that shared data formats and provided tools for evaluation and
reporting. An early example of such an implementation is MLCþþ [7],
a machine learning library in Cþþwith a command line interface that featured

http://www.rulequest.com/Personal


39OPEN-SOURCE TOOLS FOR DATA MINING
several then-standard data analysis techniques from machine learning.
MLCþþ was also designed as an object-oriented library, extendible through
algorithms written by a user who could reuse parts of the library as desired.

Command line interfaces, limited interaction with the data analysis envi-
ronment, and textual output of inferred models and their performance
scores were not things a physician or medical researcher would get too
excited about. To be optimally useful for researchers, data mining programs
needed to provide built-in data visualization and the ability to easily interact
with the program. With the evolution of graphical user interfaces and oper-
ating systems that supported them, data mining programs started to incor-
porate these features. MLCþþ, for instance, was acquired by Silicon
Graphics in mid 1990s, and turned into MineSet [8], at that time the most
sophisticated data mining environment with many interesting data and
model visualizations. MineSet implemented an interface whereby the data
analysis schema was in a way predefined: the user could change the param-
eters of analysis methods, but not the composition of the complete analysis
pathway. Clementine (http://www.spss.com/clementine), another popular
commercial data mining suite, pioneered user control over the analysis path-
way by embedding various data mining tasks within separate components
that were placed in the analysis schema and then linked with each other
to construct a particular analysis pathway. Several modern open-source
data mining tools use a similar visual programming approach that, because
it is flexible and simple to use, may be particularly appealing to data analysts
and users with backgrounds other than computer science.

Flexibility and extensibility in analysis software arise from being able to
use existing code to develop or extend one’s own algorithms. For example,
Weka (http://www.cs.waikato.ac.nz/ml/weka/) [9], a popular data mining
suite, offers a library of well-documented Java-based functions and classes
that can be easily extended, provided sufficient knowledge of Weka’s archi-
tecture and Java programming. A somewhat different approach has been
taken by other packages, including R (http://www.r-project.org), which is
one of the most widely known open-source statistical and data mining
suites. Instead of extending R with functions in C (the language of its
core) R also implements its own scripting language with an interface to its
functions in C. Most extensions of R are then implemented as scripts,
requiring no source-code compilation or use of a special development envi-
ronment. Recently, with advances in the design and performance of general-
purpose scripting languages and their growing popularity, several data
mining tools have incorporated these languages. The particular benefit of
integration with a scripting language is the speed (all computationally inten-
sive routines are still implemented in some fast low-level programming
language and are callable from the scripting language), flexibility (scripts
may integrate functions from the core suite and functions from the scripting
language’s native library), and extensibility that goes beyond the sole use of
the data mining suites through use of other packages that interface with that

http://www.spss.com/clementine
http://www.cs.waikato.ac.nz/ml/weka/
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particular scripting language. Although harder to learn and use for novices
and those with little expertise in computer science or math than systems
driven completely by graphical user interfaces, scripting in data mining
environments is essential for fast prototyping and development of new tech-
niques and is a key to the success of packages like R.
Why mine medical data with open-source tools?

Compared with off-the-shelf commercial data mining suites, open-source
tools may have several disadvantages. They are developed mostly by
research communities that often incorporate their most recent data analysis
algorithms, resulting in software that may not be completely stable. Com-
mercial data mining tools are often closely integrated with a commercial
database management system, usually offered by the same vendor. Open-
source data mining suites instead come with plug-ins that allow the user
to query for the data from standard databases, but integration with these
may require more effort than a single-vendor system.

These and other potential shortcomings are offset by several advantages
offered by open-source data mining tools. First, open-source data mining
suites are free. They may incorporate new, experimental techniques, includ-
ing some in prototype form, and may address emerging problems sooner
than commercial software. This feature is particularly important in biomed-
icine, with the recent emergence of many genome-scale data sets and new
data and knowledge bases that could be integrated within analysis schemata.
Provided that a large and diverse community is working with a tool, the set
of techniques it may offer can be large and thus may address a wide range of
problems. Research-oriented biomedical groups find substantial usefulness
in the extendibility of the open-source data mining suites, the availability
of direct access to code and components, and the ability to cross-link the
software with various other data analysis programs. Modern scripting
languages are particularly strong in supporting this type of ad hoc integra-
tion. Documentation for open-source software may not be as polished as
that for commercial packages, but it is available in many forms and often
includes additional tutorials and use cases written by enthusiasts outside
the core development team. Finally, there is user support, which is different
for open-source than for commercial packages. Users of commercial pack-
ages depend on the company’s user support department, whereas users of
open-source suites are, as a matter of principle, usually eager to help each
other. This cooperation is especially true for open-source packages with
large and active established user bases. Such communities communicate
by online forums, mailing lists, and bug tracking systems to provide encour-
agement and feedback to developers, propose and prioritize improvements,
report on bugs and errors, and support new users.

As these open-source tools incorporate advances in user interfaces and
reporting tools, implement the latest analysis methods, and grow their user
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bases, they are becoming useful alternatives and complements to commercial
tools in medical data mining.
Open-source data mining toolboxda wish list

To support medical data mining and exploratory analysis, a modern data
mining suite should provide an easy-to-use interface for physicians and
biomedical researchers that is well supported with data and model visualiza-
tions, offers data analysis tools to accommodate interactive search for any
interesting data patterns, and allows interactive exploration of inferred
models [10–12]. In addition to being simple, the tools have to be flexible,
allowing the users to define their own schemata for data analysis. Modern
open-source data mining suites are almost by definition extendible; although
this may not be a major concern of the users, it is important for data ana-
lysts and programmers in biomedical research groups who may need to
develop custom-designed data analysis components and schemata.

Most open-source data mining tools today come as comprehensive, inte-
grated suites featuring a wide range of data analysis components. In our
opinion, the following set of tools and techniques should be on the wish
list of any biomedical data analyst:

� A set of basic statistical tools for primary inspection of the data
� Various data visualization techniques, such as histograms, scatterplots,
distribution charts, parallel coordinate visualizations, mosaic and sieve
diagrams, and so forth
� Standard components for data preprocessing that include querying from
databases, case selection, feature ranking and subset selection, and
feature discretization
� A set of techniques for unsupervised data analysis, such as principal
component analysis, various clustering techniques, inference of associa-
tion rules, and subgroup mining techniques
� A set of techniques for supervised data analysis, such as classification
rules and trees, support vector machines, naı̈ve Bayesian classifiers, dis-
criminant analysis, and so forth
� A toolbox for model evaluation and scoring (classification accuracy,
sensitivity, specificity, Brier score, and other), that also includes graph-
ical analysis of results, such as receiver-operating characteristic curves
and lift chart analysis
� Visualizations of inferred models developed from either supervised or
unsupervised analysis
� An exploratory data analysis environment, wherein the user can select
a set of cases, features, or components of the model and explore the
selection in a subsequent data or model visualization component. The
emphasis here is on the interplay between data visualization and
interaction.
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� Techniques for saving the model in some standard format (such as
PMML, http://www.dmg.org/) for its later use in systems for decision
support outside the data mining suite with which the model was
constructed
� Reporting, that is, implementation of a notebook-style tool in which the
user can save the present results of analysis and associated reports,
include any comments, and later retrieve the corresponding analysis
schema for further exploration

We use the above list implicitly when reviewing the open-source data
mining suites below and when summarizing our impressions of them at
the end of the article.
Selected open-source data mining suites

Below we review several open-source data mining suites, including some
of the largest and most popular packages, such as Weka and R. Although
representative of different types of user interfaces and implementations,
the list is restrictive because the number of other data mining suites in
open source is large; because of space limitations we necessarily selected
only a small sample. We direct interested readers to web pages, such as
KDnuggets (http://www.kdnuggets.com/) and Open Directory (http://
dmoz.org), for more comprehensive lists of open-source data mining tools.
For illustrations throughout this article we used a data set on heart disease
from UCI Machine Learning Repository [5].
R

R (http://www.r-project.org) is a language and environment for statistical
computing and graphics. Most of its computationally intensive methods are
efficiently implemented in C, Cþþ, and Fortran, and then interfaced to R,
a scripting language similar to the S language originally developed at Bell
Laboratories [13]. R includes an extensive variety of techniques for statisti-
cal testing, predictive modeling, and data visualization, and has become a de
facto standard open-source library for statistics (Fig. 1). R can be extended
by hundreds of additional packages available at The Comprehensive R
Archive Network (http://cran.r-project.org) that cover virtually every aspect
of statistical data analysis and machine learning. For those interested in
genomic data analysis in bioinformatics, there is an R library and software
development project called Bioconductor (http://www.bioconductor.org).

The preferred interface to R is its command line and use through script-
ing. Scripting interfaces have distinct advantages: the data analysis proce-
dure is stated clearly and can be saved for the later reuse. The downside
is that scripting requires some programming skills. Users lacking them
can use R through extensions with graphical user interfaces. R Commander

http://www.dmg.org/
http://www.kdnuggets.com/
http://dmoz.org
http://dmoz.org
http://www.r-project.org
http://cran.r-project.org
http://www.bioconductor.org


Fig. 1. Snapshot of the basic R environment (RGui) with an example script that reads the data,

constructs an object that stores the result of hierarchical clustering, and displays it as a dendro-

gram in a separate window.
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(http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/), for instance, implements
a graphical user interface to compose and issue commands in R script.
Rattle (http://rattle.togaware.com), another interface extension of R, is
implemented as an R library and provides a graphical user interface to
many of R’s data analysis and modeling functions.
Tanagra
Tanagra (http://eric.univ-lyon2.fr/wricco/tanagra/) is a data mining suite
built around a graphical user interface wherein data processing and analysis
components are organized in a tree-like structure in which the parent com-
ponent passes the data to its children (Fig. 2). For example, to score a pre-
diction model in Tanagra, the model is used to augment the data table with
a column encoding the predictions, which is then passed to the component
for evaluation.

Although lacking more advanced visualizations, Tanagra is particularly
strong in statistics, offering a wide range of uni- and multivariate parametric
and nonparametric tests. Equally impressive is its list of feature selection
techniques. Together with a compilation of standard machine learning

http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
http://rattle.togaware.com
http://eric.univ-lyon2.fr/~ricco/tanagra/


Fig. 2. Snapshots of Tanagra with an experimental setup defined in the left column, which

loads the data (Dataset), shows a scatterplot (Scatterplot 1), selects a set of features (Define

status 1), computes linear correlations (Linear correlation 1), selects a subset of instances based

on a set of conditions (Rule-based selection 1), computes the correlation and a scatterplot for

these instances, and so on. The components of the data processing tree are dragged from the list

at the bottom (Components); the snapshot shows only those related to statistics. The scatterplot

on the right side shows the separation of the instances based on the first two axes as found by

the partial least squares analysis, where each symbol represents a patient, with the symbol’s

shape corresponding to a diagnosis.
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techniques, it also includes correspondence analysis, principal component
analysis, and the partial least squares methods. Presentation of machine
learning models is most often not graphical, but insteaddunlike other ma-
chine learning suitesdincludes several statistical measures. The difference in
approaches is best illustrated by the naı̈ve Bayesian classifier, whereby,
unlike Weka and Orange, Tanagra reports the conditional probabilities
and various statistical assessments of importance of the attributes (eg, c2,
Cramer’s V, and Tschuprow’s t). Tanagra’s data analysis components report
their results in a nicely formatted HTML.
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Weka
Weka (Waikato Environment for Knowledge Analysis, http://www.cs.
waikato.ac.nz/ml/weka/) [9] is perhaps the best-known open-source machine
learning and data mining environment. Advanced users can access its com-
ponents through Java programming or through a command-line interface.
For others, Weka provides a graphical user interface in an application called
the Weka KnowledgeFlow Environment featuring visual programming, and
Weka Explorer (Fig. 3) providing a less flexible interface that is perhaps eas-
ier to use. Both environments include Weka’s impressive array of machine
learning and data mining algorithms. They both offer some functionality
for data and model visualization, although not as elaborate as in the other
suites reviewed here. Compared with R, Weka is much weaker in classical
statistics but stronger in machine learning techniques. Weka’s community
has also developed a set of extensions (http://weka.sourceforge.net/wiki/
index.php/Related_Projects) covering diverse areas, such as text mining,
visualization, bioinformatics, and grid computing. Like R in statistics,
Fig. 3. Weka Explorer with which we loaded the heart disease data set and induced a naı̈ve

Bayesian classifier. On the right side of the window are the results of evaluation of the model

using 10-fold cross-validation.

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://weka.sourceforge.net/wiki/index.php/Related_Projects
http://weka.sourceforge.net/wiki/index.php/Related_Projects
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Weka became a reference package in the machine learning community,
attracting a number of users and developers. Medical practitioners would
get the easiest start by using Weka Explorer, and combining it with exten-
sions for more advanced data and model visualizations.
YALE
Among the reviewed graphical user interface environments, the visual pro-
gramming in YALE (Yet Another Learning Environment, http://rapid-i.
com) is the closest to the traditional sense of the word ‘‘programming’’: the
user defines an experiment by placing the functions (eg, components for
reading the data, cross-validation, applying a chain of operators, and so forth)
Fig. 4. A snapshot of YALE with the experimental setup for cross-validation that reads the

data, computes some basic statistics about the features, and then cross-validates a classification

tree inducer J48. Selection of any component from the list on the left of the window provides

access to its parameters; those for cross-validation are displayed in the snapshot. The experi-

ment log is displayed in the bottom part of the window. After executing the experiment, the

results of experiments are available in the Results tab.

http://rapid-i.com
http://rapid-i.com
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into a treelike structure and runs the program (Fig. 4). Internal nodes of the
tree represent functions in which their children are the arguments (which
may in turn bedand usually aredfunctions). For example, an operator
‘‘XValidation’’ performs cross-validation and requires two child nodes.
The first must be able to handle an ‘‘ExampleSet’’ and deliver a ‘‘Model.’’
The second child node gets an ExampleSet and a Model and outputs a ‘‘Per-
formanceVector.’’ The second child would typically be an operator chain con-
sisting of a ‘‘ModelApplier,’’ which uses the prediction Model on an
ExampleSet, resulting in a table of predictions and actual classes and a ‘‘Per-
formanceEvaluator,’’ which takes the table and computes the corresponding
classifier scores.

YALE incorporates a reasonable number of visualizations ranging from
the basic histograms to multidimensional RadViz [14] projections. YALE is
written in Java and is built on top of Weka, thus including its vast array of
data analysis components. Although data miners with a background in
programming easily grasp its visual functional programming concepts,
Fig. 5. Screenshot of KNIME. The central part of the window shows the experimental setup

with several interconnected nodes; the right part contains a useful description of the selected

node. The screenshot shows an experiment in which we loaded the data, colored the instances

according to their class and showed them in a table, and used parallel coordinates and a scatter-

plot for visualization. In the middle of the graph we placed the nodes for testing the perfor-

mance of a classification tree inducer; node ‘‘Cross-validation’’ has an internal workflow with

the definition of the evaluated learning algorithm. At the bottom part of the graph are nodes

for random partitioning of the data set, binning of the training set, and derivation of a classifi-

cation tree used to predict the classes of the test set and obtain the related performance scores.

In addition, we visualized the training set in a scatterplot, but put the instances through the

HiLite Filter. With this setup, we can pick a node in the classification tree ‘‘J48 Weka’’ and

see the corresponding examples in the ‘‘Scatter Plot.’’
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medical practitioners and researchers with limited knowledge of computer
science may find them somewhat complicated to understand and manage.
KNIME
KNIME (Konstanz InformationMiner, http://www.knime.org) is a nicely
designed data mining tool that runs inside the IBM’s Eclipse development
environment. The application is easy to try out because it requires no instal-
lation besides downloading and unarchiving. Like YALE, KNIME is
written in Java and can extend its library of built-in supervised and
Fig. 6. A dialog of the node ‘‘CAIM Binner’’ (from Fig. 5) that transforms continuous features

into discrete features (discretization). Features to be discretized are selected in the bottom part

of the window, with the top part of the window displaying the corresponding split points.

http://www.knime.org


49OPEN-SOURCE TOOLS FOR DATA MINING
unsupervised data mining algorithms with those provided by Weka. But un-
like that of Yale, KNIME’s visual programming is organized like a data
flow. The user ‘‘programs’’ by dragging nodes from the node repository
to the central part of the benchmark (Fig. 5). Each node performs a certain
function, such as reading the data, filtering, modeling, visualization, or sim-
ilar functions. Nodes have input and output ports; most ports send and re-
ceive data, whereas some handle data models, such as classification trees.
Unlike nodes in Weka’s KnowledgeFlow, different types of ports are clearly
marked, relieving the beginner of the guesswork of what connects where.

Typical nodes inKNIME’s KnowledgeFlow have two dialog boxes, one for
configuring the algorithmor a visualization and the other for showing its results
(Fig. 6). Each node can be in one of the three states, depicted with a traffic-light
display: they can be disconnected, not properly configured, or lack the input
data (red); be ready for execution (amber); or have finished the processing
(green). A nice feature called HiLite (Fig. 7) allows the user to select a set of
Fig. 7. KNIME HiLiteing (see Fig. 5), where the instances from the selected classification tree

node are HiLited and marked in the scatterplot.
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instances in one node and have them marked in any other visualization in the
current application, in this way further supporting exploratory data analysis.
Orange
Orange (http://www.ailab.si/orange) is a data mining suite built using the
same principles as KNIME and Weka KnowledgeFlow. In its graphical
environment calledOrangeCanvas (Fig. 8), the user placeswidgetson a canvas
and connects them into a schema. Each widget performs some basic function,
Fig. 8. Snapshot of the Orange canvas. The upper part of the schema centered around ‘‘Test

Learners’’ uses cross-validation to compare the performance of three classifiers: naı̈ve Bayes,

logistic regression, and a classification tree. Numerical scores are displayed in ‘‘Test Learners,’’

with evaluation results also passed on to ‘‘ROC Analysis’’ and ‘‘Calibration Plot’’ that provide

means to graphically analyze the predictive performance. The bottom part contains a setup

similar to that in KNIME (see Fig. 5): the data instances are split into training and test sets.

Both parts are fed into ‘‘Test Learners,’’ which, in this case, requires a separate test set and tests

a classification tree built on the training set that is also visualized in ‘‘Classification Tree

Graph.’’ ‘‘Linear Projection’’ visualizes the training instances, separately marking the subset

selected in the ‘‘Classification Tree Graph’’ widget.

http://www.ailab.si/orange
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but unlike inKNIMEwith two data typesdmodels and sets of instancesdthe
signals passed around Orange’s schemata may be of different types, and may
include objects such as learners, classifiers, evaluation results, distance matri-
ces, dendrograms, and so forth. Orange’s widgets are also coarser then
KNIME’s nodes, so typically a smaller number of widgets is needed to accom-
plish the same task. The difference is most striking in setting up a cross-
validation experiment, which is much more complicated in KNIME, but
with the benefit of giving the user more control in setting up the details of the
experiment, such as separate preprocessingof trainingand testing example sets.

Besides friendliness and simplicity of use, Orange’s strong points are
a large number of different visualizations of data and models, including
intelligent search for good visualizations, and support of exploratory data
analysis through interaction. In a concept similar to KNIME’s HiLiteing
(yet subtly different from it), the user can select a subset of examples in
a visualization, in a model, or with an explicit filter, and pass them to, for
instance, a model inducer or another visualization widget that can show
them as a marked subset of the data (Fig. 9).

Orange is weak in classical statistics; although it can compute basic sta-
tistical properties of the data, it provides no widgets for statistical testing. Its
Fig. 9. The linear projection widget from Orange displaying a two-dimensional projection of

data, where the x and y axis are a linear combination of feature values whose components are

delineated with feature vectors. Coming from the schema shown in Fig. 8, the points correspond-

ing to instances selected in the classification tree are filled and those not in the selection are open.
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reporting capabilities are limited to exporting visual representations of data
and models. Similar to R, the computationally intensive parts of Orange are
written in Cþþ, whereas the upper layers are in developed in the scripting
language Python, allowing advanced users to supplement the existing suite
with their own algorithms or with routines from Python’s extensive scientific
library (http://www.scipy.org).
GGobi
Data visualization was always considered one of the key tools for success-
ful data mining. Particularly suited for data mining and explorative data
analysis, GGobi (http://www.ggobi.org) is an open-source visualization pro-
gram featuring interactive visualizations through, for instance, brushing
(Fig. 10), whereby a user’s selection is marked in all other opened visualiza-
tions, and grand tour (Fig. 11) [15], which uses two-dimensional visualiza-
tions and in a movie-like fashion shifts between two different projections.
GGobi can also plot networks, a potentially useful feature for analysis of
larger volumes of data, such as those from biomedicine. By itself GGobi
is only intended for visualization-based data mining, but can be nicely inte-
grated with other statistical and data mining approaches when used as
a plug-in for R or used through interfaces for the scripting languages Perl
and Python.
Fig. 10. Scatterplot, a matrix of scatterplots and parallel coordinates as displayed by GGobi.

The instances selected in one visualization (scatterplot, in this case) are marked in the others.

http://www.scipy.org
http://www.ggobi.org


Fig. 11. GGobi’s Grand tour shows a projection similar to the Linear Projection in Orange (see

Fig. 9) but animates it by smoothly switching between different interesting projections, which

gives a good impression of positions of the instances in the multidimensional space.
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Summary

State-of-the-art open-source data mining suites of today have come a long
way from where they were only a decade ago. They offer nice graphical inter-
faces, focus on usability and interactivity, support extensibility through aug-
mentation of the source code or (better) through use of interfaces for add-on
modules. They provide flexibility through either visual programming within
graphical user interfaces or prototyping by way of scripting languages. Major
toolboxes are well documented and use forums or discussion groups for user
support and exchange of ideas.

The degree to which all of the above is implemented of course varies from
one suite to another, but in the packages we have reviewed in this article most
of the above issues were addressed andwe could not find a clear winner in sup-
porting all of the aspects in the bestway. For amedical practitioner or biomed-
ical researcher starting with data mining the choice for the right suite may be
guided by the simplicity of the interface, whereas for research teams a choice of
implementation or integration language (Java, R, C/Cþþ, Python, and so
forth) may be important. For the wish list of data mining techniques we find
that all packages we have reviewed (with the exception of GGobi focusing
on visualization only) cover most of the standard data mining operations,
ranging from preprocessing to modeling, with some providing better support
for statistics and others for visualization.

There are many open-source data mining tools available, and our inten-
tion was only to demonstrate the ripeness of the field through exemplary
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implementations. We covered only general-purpose packages, and also
because of space limitations did not discuss any of the specialized software
tools dealing with biomedical data analysis, such as text mining, bioinfor-
matics, microarray preprocessing, analysis in proteomics, and so forth,
some of which are addressed in other articles in this issue. The number of
such tools is large, with new development projects being established almost
on a daily basis. Not all of these will be successful in the long term, but
many of them are available, stable, and have already been used in a large
number of studies. With growing awareness that in science we should share
the experimental data and knowledge, along with the tools we build to
analyze and integrate them, open-source frameworks provide the right envi-
ronment for community-based development, fostering exchange of ideas,
methods, algorithms and their implementations.
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