298 research outputs found

    "Nutraceuticals" in relation to human skeletal muscle and exercise.

    Get PDF
    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and2) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine

    Sexual Behaviour and HPV Infections in 18 to 29 Year Old Women in the Pre-Vaccine Era in the Netherlands

    Get PDF
    Contains fulltext : 71058.pdf ( ) (Open Access)BACKGROUND: Infection with Human Papillomavirus (HPV) is a necessary event in the multi-step process of cervical carcinogenesis. Little is known about the natural history of HPV infection among unscreened young adults. As prophylactic vaccines are being developed to prevent specifically HPV 16 and 18 infections, shifts in prevalence in the post vaccine era may be expected. This study provides a unique opportunity to gather baseline data before changes by nationwide vaccination occur. METHODS AND PRINCIPAL FINDINGS: This cross-sectional study is part of a large prospective epidemiologic study performed among 2065 unscreened women aged 18 to 29 years. Women returned a self-collected cervico-vaginal specimen and filled out a questionnaire. All HPV DNA-positive samples (by SPF(10) DEIA) were genotyped using the INNO-LiPA HPV genotyping assay. HPV point prevalence in this sample was 19%. Low and high risk HPV prevalence was 9.1% and 11.8%, respectively. A single HPV-type was detected in 14.9% of all women, while multiple types were found in 4.1%. HPV-types 16 (2.8%) and 18 (1.4%) were found concomitantly in only 3 women (0.1%). There was an increase in HPV prevalence till 22 years. Multivariate analysis showed that number of lifetime sexual partners was the most powerful predictor of HPV positivity, followed by type of relationship, frequency of sexual contact, age, and number of sexual partners over the past 6 months. CONCLUSIONS AND SIGNIFICANCE: This study shows that factors independently associated with HPV prevalence are mainly related to sexual behaviour. Combination of these results with the relative low prevalence of HPV 16 and/or 18 may be promising for expanding the future target group for catch up vaccination. Furthermore, these results provide a basis for research on possible future shifts in HPV genotype prevalence, and enable a better estimate of the effect of HPV 16-18 vaccination on cervical cancer incidence

    Complete Genome Sequence of Francisella tularensis Subspecies holarctica FTNF002-00

    Get PDF
    Francisella tularensis subspecies holarctica FTNF002-00 strain was originally obtained from the first known clinical case of bacteremic F. tularensis pneumonia in Southern Europe isolated from an immunocompetent individual. The FTNF002-00 complete genome contains the RD23 deletion and represents a type strain for a clonal population from the first epidemic tularemia outbreak in Spain between 1997–1998. Here, we present the complete sequence analysis of the FTNF002-00 genome. The complete genome sequence of FTNF002-00 revealed several large as well as small genomic differences with respect to two other published complete genome sequences of F. tularensis subsp. holarctica strains, LVS and OSU18. The FTNF002-00 genome shares >99.9% sequence similarity with LVS and OSU18, and is also ∼5 MB smaller by comparison. The overall organization of the FTNF002-00 genome is remarkably identical to those of LVS and OSU18, except for a single 3.9 kb inversion in FTNF002-00. Twelve regions of difference ranging from 0.1–1.5 kb and forty-two small insertions and deletions were identified in a comparative analysis of FTNF002-00, LVS, and OSU18 genomes. Two small deletions appear to inactivate two genes in FTNF002-00 causing them to become pseudogenes; the intact genes encode a protein of unknown function and a drug:H+ antiporter. In addition, we identified ninety-nine proteins in FTNF002-00 containing amino acid mutations compared to LVS and OSU18. Several non-conserved amino acid replacements were identified, one of which occurs in the virulence-associated intracellular growth locus subunit D protein. Many of these changes in FTNF002-00 are likely the consequence of direct selection that increases the fitness of this subsp. holarctica clone within its endemic population. Our complete genome sequence analyses lay the foundation for experimental testing of these possibilities

    Pinealectomy affects bone mineral density and structure - an experimental study in sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis and associated fractures are a major public health burden and there is great need for a large animal model. Melatonin, the hormone of the pineal gland, has been shown to influence bone metabolism. This study aims to evaluate whether absence of melatonin due to pinealectomy affects the bone mass, structure and remodeling in an ovine animal model.</p> <p>Methods</p> <p>Female sheep were arranged into four groups: Control, surgically ovariectomized (Ovx), surgically pinealectomized (Px) and Ovx+Px. Before and 6 months after surgery, iliac crest biopsies were harvested and structural parameters were measured using μCT. Markers of bone formation and resorption were determined. To evaluate long term changes after pinealectomy, bone mineral density (BMD) was analyzed at the distal radius at 0, 3, 9, 18 and 30 months.</p> <p>Results</p> <p>Cancellous bone volume (BV/TV) declined after 6 months by -13.3% Px and -21.5% OvxPx. The bone loss was due to increased trabecular separation as well as decreased thickness. The histomorphometric quantification and determination of collagen degradation products showed increased bone resorption following pinealectomy. Ovariectomy alone results in a transient bone loss at the distal radius followed by continuous increase to baseline levels. The bone resorption activity after pinealectomy causes a bone loss which was not transient, since a continuous decrease in BMD was observed until 30 months.</p> <p>Conclusions</p> <p>The changes after pinealectomy in sheep are indicative of bone loss. Overall, these findings suggest that the pineal gland may influence bone metabolism and that pinealectomy can be used to induce bone loss in sheep.</p

    Contesting longstanding conceptualisations of urban green space

    Get PDF
    Ever since the Victorian era saw the creation of “parks for the people,” health and wellbeing benefits have been considered a primary benefit of urban parks and green spaces. Today, public health remains a policy priority, with illnesses and conditions such as diabetes, obesity and depression a mounting concern, notably in increasingly urbanised environments. Urban green space often is portrayed as a nature-based solution for addressing such health concerns. In this chapter, Meredith Whitten investigates how the health and wellbeing benefits these spaces provide are limited by a narrow perspective of urban green space. Whitten explores how our understandings of urban green space remain rooted in Victorian ideals and calls into question how fit for purpose they are in twenty-first-century cities. Calling on empirical evidence collected in three boroughs in London with changing and increasing demographic populations, she challenges the long-held cultural underpinnings that lead to urban green space being portrayed “as a panacea to urban problems, yet treating it as a ‘cosmetic afterthought’” (Whitten, M, Reconceptualising green space: planning for urban green space in the contemporary city. Doctoral thesis, London School of Economics and Political Science, London, U.K. http://etheses.lse.ac.uk/. Accessed 12 Jun 2019, 2019b, p 18)

    Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines

    Get PDF
    Macrophages are a type of immune cell that engulf and digest microorganisms. Despite their role in protecting the host from infection, many pathogens have developed ways to hijack the macrophage and use the cell for their own survival and proliferation. This includes the parasites Trypanosoma cruzi and Leishmania mexicana. In order to gain further understanding of how these pathogens interact with the host macrophage, we compared macrophages that have been infected with these parasites to macrophages that have been stimulated in a number of different ways. Macrophages can be activated by a wide variety of stimuli, including common motifs found on pathogens (known as pathogen associated molecular patterns or PAMPs) and cytokines secreted by other immune cells. In this study, we have delineated the relationships between the macrophage activation programs elicited by a number of cytokines and PAMPs. Furthermore, we have placed the macrophage responses to T. cruzi and L. mexicana into the context of these activation programs, providing a better understanding of the interactions between these pathogens and macrophages

    HPV vaccine decision making in pediatric primary care: a semi-structured interview study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite national recommendations, as of 2009 human papillomavirus (HPV) vaccination rates were low with < 30% of adolescent girls fully vaccinated. Research on barriers to vaccination has focused separately on parents, adolescents, or clinicians and not on the decision making process among all participants at the point of care. By incorporating three distinct perspectives, we sought to generate hypotheses to inform interventions to increase vaccine receipt.</p> <p>Methods</p> <p>Between March and June, 2010, we conducted qualitative interviews with 20 adolescent-mother-clinician triads (60 individual interviews) directly after a preventive visit with the initial HPV vaccine due. Interviews followed a guide based on published HPV literature, involved 9 practices, and continued until saturation of the primary themes was achieved. Purposive sampling balanced adolescent ages and practice type (urban resident teaching versus non-teaching). Using a modified grounded theory approach, we analyzed data with NVivo8 software both within and across triads to generate primary themes.</p> <p>Results</p> <p>The study population was comprised of 20 mothers (12 Black, 9 < high school diploma), 20 adolescents (ten 11-12 years old), and 20 clinicians (16 female). Nine adolescents received the HPV vaccine at the visit, eight of whom were African American. Among the 11 not vaccinated, all either concurrently received or were already up-to-date on Tdap and MCV4. We did not observe systematic patterns of vaccine acceptance or refusal based on adolescent age or years of clinician experience. We identified 3 themes: (1) Parents delayed, rather than refused vaccination, and when they expressed reluctance, clinicians were hesitant to engage them in discussion. (2) Clinicians used one of two strategies to present the HPV vaccine, either presenting it as a routine vaccine with no additional information or presenting it as optional and highlighting risks and benefits. (3) Teens considered themselves passive participants in decision making, even when parents and clinicians reported including them in the process.</p> <p>Conclusions</p> <p>Programs to improve HPV vaccine delivery in primary care should focus on promoting effective parent-clinician communication. Research is needed to evaluate strategies to help clinicians engage reluctant parents and passive teens in discussion and measure the impact of distinct clinician decision making approaches on HPV vaccine delivery.</p

    Dopamine Signaling Is Essential for Precise Rates of Locomotion by C. elegans

    Get PDF
    Dopamine is an important neuromodulator in both vertebrates and invertebrates. We have found that reduced dopamine signaling can cause a distinct abnormality in the behavior of the nematode C. elegans, which has only eight dopaminergic neurons. Using an automated particle-tracking system for the analysis of C. elegans locomotion, we observed that individual wild-type animals made small adjustments to their speed to maintain constant rates of locomotion. By contrast, individual mutant animals defective in the synthesis of dopamine made larger adjustments to their speeds, resulting in large fluctuations in their rates of locomotion. Mutants defective in dopamine signaling also frequently exhibited both abnormally high and abnormally low average speeds. The ability to make small adjustments to speed was restored to these mutants by treatment with dopamine. These behaviors depended on the D2-like dopamine receptor DOP-3 and the G-protein subunit GOA-1. We suggest that C. elegans and other animals, including humans, might share mechanisms by which dopamine restricts motor activity levels and coordinates movement
    corecore