57 research outputs found

    Nitric Oxide (NO) and Cyclooxygenase-2 (COX-2) Cross-Talk in Co-Cultures of Tumor Spheroids with Normal Cells

    Get PDF
    Cyclooxygenases (COX), prostaglandin E2 (PGE2) and nitric oxide (NO) are believed to be some of the most important factors related to colon cancer growth and metastasis. In this study, we aimed to investigate the associations between COX-2, PGE2 and NO in co-cultures of human colon cancer spheroids obtained from different tumor grades with normal human colonic epithelium and myofibroblast monolayers. L-arginine (2 mM), a substrate for nitric oxide synthases (NOS), decreased COX-2 and PGE2 levels, while NG-nitro-L-arginine methyl ester (L-NAME) (2 mM), a NOS inhibitor, had no influence on COX-2 and PGE2 levels but limited tumor cell motility. NS398 (75 μM), a selective COX-2 inhibitor, had no significant influence on NO level but decreased motility of tumor cells. COX-2, PGE2 and NO levels depended on the tumor grade of the cells, being the highest in Duke’s stage III colon carcinoma. Summing up, we showed that addition of L-arginine at doses which did not stimulate NO level caused a significant decrease in COX-2 and PGE2 amounts in co-cultures of colon tumor spheroids with normal epithelial cells and myofibroblasts. Any imbalances in NO level caused by exogenous factors influence COX-2 and PGE2 amounts depending on the kind of cells, their reciprocal interactions and the local microenvironmental conditions. The knowledge of these effects may be useful in limiting colon carcinoma progression and invasion

    Radiosensitizing potential of the selective cyclooygenase-2 (COX-2) inhibitor meloxicam on human glioma cells

    Get PDF
    The COX-2 protein is frequently overexpressed in human malignant gliomas. This expression has been associated with their aggressive growth characteristics and poor prognosis for patients. Targeting the COX-2 pathway might improve glioma therapy. In this study, the effects of the selective COX-2 inhibitor meloxicam alone and in combination with irradiation were investigated on human glioma cells in vitro. A panel of three glioma cell lines (D384, U87 and U251) was used in the experiments from which U87 cells expressed constitutive COX-2. The response to meloxicam and irradiation (dose-range of 0–6 Gy) was determined by the clonogenic assay, cell proliferation was evaluated by growth analysis and cell cycle distribution by FACS. 24–72 h exposure to 250–750 μM meloxicam resulted in a time and dose dependent growth inhibition with an almost complete inhibition after 24 h for all cell lines. Exposure to 750 μM meloxicam for 24 h increased the fraction of cells in the radiosensitive G2/M cell cycle phase in D384 (18–27%) and U251 (17–41%) cells. 750 μM meloxicam resulted in radiosensitization of D384 (DMF:2.19) and U87 (DMF:1.25) cells, but not U251 cells (DMF:1.08). The selective COX-2 inhibitor meloxicam exerted COX-2 independent growth inhibition and radiosensitization of human glioma cells

    INSPIRE: A phase III study of the BLP25 liposome vaccine (L-BLP25) in Asian patients with unresectable stage III non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous research suggests the therapeutic cancer vaccine L-BLP25 potentially provides a survival benefit in patients with locally advanced unresectable stage III non-small cell lung carcinoma (NSCLC). These promising findings prompted the phase III study, INSPIRE, in patients of East-Asian ethnicity. East-Asian ethnicity is an independent favourable prognostic factor for survival in NSCLC. The favourable prognosis is most likely due to a higher incidence of EGFR mutations among this patient population.</p> <p>Methods/design</p> <p>The primary objective of the INSPIRE study is to assess the treatment effect of L-BLP25 plus best supportive care (BSC), as compared to placebo plus BSC, on overall survival time in East-Asian patients with unresectable stage III NSCLC and either documented stable disease or an objective response according to the Response Evaluation Criteria in Solid Tumors (RECIST) criteria following primary chemoradiotherapy. Those in the L-BLP25 arm will receive a single intravenous infusion of cyclophosphamide (300 mg/m<sup>2</sup>) 3 days before the first L-BLP25 vaccination, with a corresponding intravenous infusion of saline to be given in the control arm. A primary treatment phase of 8 subcutaneous vaccinations of L-BLP25 930 μg or placebo at weekly intervals will be followed by a maintenance treatment phase of 6-weekly vaccinations continued until disease progression or discontinuation from the study.</p> <p>Discussion</p> <p>The ongoing INSPIRE study is the first large study of a therapeutic cancer vaccine specifically in an East-Asian population. It evaluates the potential of maintenance therapy with L-BLP25 to prolong survival in East-Asian patients with stage III NSCLC where there are limited treatment options currently available.</p> <p>Study number</p> <p>EMR 63325-012</p> <p>Trial Registration</p> <p>Clinicaltrials.gov reference: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01015443">NCT01015443</a></p

    EGFR Tyrosine Kinase Inhibitors Activate Autophagy as a Cytoprotective Response in Human Lung Cancer Cells

    Get PDF
    Epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib have been widely used in patients with non-small-cell lung cancer. Unfortunately, the efficacy of EGFR-TKIs is limited because of natural and acquired resistance. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether autophagy can be activated by gefitinib or erlotinib and thereby impair the sensitivity of targeted therapy to lung cancer cells remains unknown. Here, we first report that gefitinib or erlotinib can induce a high level of autophagy, which was accompanied by the inhibition of the PI3K/Akt/mTOR signaling pathway. Moreover, cytotoxicity induced by gefitinib or erlotinib was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting ATG5 and ATG7, the most important components for the formation of autophagosome. Interestingly, EGFR-TKIs can still induce cell autophagy even after EGFR expression was reduced by EGFR specific siRNAs. In conclusion, we found that autophagy can be activated by EGFR-TKIs in lung cancer cells and inhibition of autophagy augmented the growth inhibitory effect of EGFR-TKIs. Autophagy inhibition thus represents a promising approach to improve the efficacy of EGFR-TKIs in the treatment of patients with advanced non-small-cell lung cancer

    O ensino das ciências experimentais no liceu, em Portugal, na I República (1910-1926)

    Get PDF
    O ensino das ciências experimentais (ECE) em Portugal ficou, como pretendemos demonstrar, fortemente marcado pela instauração da República, que comemorou no ano transacto o seu centenário. A República de 1910 pretendeu reformar toda a mentalidade portuguesa, através do pilar base – a educação – pela qual seria capaz de sacudir a nossa maneira de ser, lançando desta forma o país para um progresso de nível europeu. O estudo a que nos propomos, uma investigação documental no domínio da História da Ciência1, visa aprofundar os conhecimentos existentes sobre esta época e perceber o impacto da reforma do ECE, principalmente nos Liceus, caracterizando as principais figuras, políticas e docentes responsáveis pela sua conceptualização e aplicação. Através desta investigação procuraremos lançar as primeiras bases para descobrir as origens deste pensamento, querendo ainda comparar os fundamentos psicopedagógicos, epistemológicos e sociológicos da época com as principais ideias actualmente presentes no ensino da Ciência. Com este trabalho pretendemos, num primeiro momento, apresentar e divulgar o desenho da investigação e os seus objectivos, na procura de estabelecer parcerias e receber contributos da comunidade académica interessada por esta problemática

    Chemotherapeutic Sensitization of Leptomycin B Resistant Lung Cancer Cells by Pretreatment with Doxorubicin

    Get PDF
    The development of novel targeted therapies has become an important research focus for lung cancer treatment. Our previous study has shown leptomycin B (LMB) significantly inhibited proliferation of lung cancer cells; however, p53 wild type lung cancer cells were resistant to LMB. Therefore, the objective of this study was to develop and evaluate a novel therapeutic strategy to sensitize LMB-resistant lung cancer cells by combining LMB and doxorubicin (DOX). Among the different treatment regimens, pretreatment with DOX (pre-DOX) and subsequent treatment with LMB to A549 cells significantly decreased the 50% inhibitory concentration (IC50) as compared to that of LMB alone (4.4 nM vs. 10.6 nM, P<0.05). Analysis of cell cycle and apoptosis by flow cytometry further confirmed the cytotoxic data. To investigate molecular mechanisms for this drug combination effects, p53 pathways were analyzed by Western blot, and nuclear proteome was evaluated by two dimensional-difference gel electrophoresis (2D-DIGE) and mass spectrometry. In comparison with control groups, the levels of p53, phospho-p53 (ser15), and p21 proteins were significantly increased while phospho-p53 (Thr55) and survivin were significantly decreased after treatments of pre-DOX and LMB (P<0.05). The 2D-DIGE/MS analysis identified that sequestosome 1 (SQSTM1/p62) had a significant increase in pre-DOX and LMB-treated cells (P<0.05). In conclusion, our results suggest that drug-resistant lung cancer cells with p53 wild type could be sensitized to cell death by scheduled combination treatment of DOX and LMB through activating and restoring p53 as well as potentially other signaling pathway(s) involving sequestosome 1

    Kaposi's Sarcoma Associated Herpes Virus (KSHV) Induced COX-2: A Key Factor in Latency, Inflammation, Angiogenesis, Cell Survival and Invasion

    Get PDF
    Kaposi's sarcoma (KS), an enigmatic endothelial cell vascular neoplasm, is characterized by the proliferation of spindle shaped endothelial cells, inflammatory cytokines (ICs), growth factors (GFs) and angiogenic factors. KSHV is etiologically linked to KS and expresses its latent genes in KS lesion endothelial cells. Primary infection of human micro vascular endothelial cells (HMVEC-d) results in the establishment of latent infection and reprogramming of host genes, and cyclooxygenase-2 (COX-2) is one of the highly up-regulated genes. Our previous study suggested a role for COX-2 in the establishment and maintenance of KSHV latency. Here, we examined the role of COX-2 in the induction of ICs, GFs, angiogenesis and invasive events occurring during KSHV de novo infection of endothelial cells. A significant amount of COX-2 was detected in KS tissue sections. Telomerase-immortalized human umbilical vein endothelial cells supporting KSHV stable latency (TIVE-LTC) expressed elevated levels of functional COX-2 and microsomal PGE2 synthase (m-PGES), and secreted the predominant eicosanoid inflammatory metabolite PGE2. Infected HMVEC-d and TIVE-LTC cells secreted a variety of ICs, GFs, angiogenic factors and matrix metalloproteinases (MMPs), which were significantly abrogated by COX-2 inhibition either by chemical inhibitors or by siRNA. The ability of these factors to induce tube formation of uninfected endothelial cells was also inhibited. PGE2, secreted early during KSHV infection, profoundly increased the adhesion of uninfected endothelial cells to fibronectin by activating the small G protein Rac1. COX-2 inhibition considerably reduced KSHV latent ORF73 gene expression and survival of TIVE-LTC cells. Collectively, these studies underscore the pivotal role of KSHV induced COX-2/PGE2 in creating KS lesion like microenvironment during de novo infection. Since COX-2 plays multiple roles in KSHV latent gene expression, which themselves are powerful mediators of cytokine induction, anti-apoptosis, cell survival and viral genome maintainence, effective inhibition of COX-2 via well-characterized clinically approved COX-2 inhibitors could potentially be used in treatment to control latent KSHV infection and ameliorate KS
    corecore