541 research outputs found

    Pushing the precision limit of ground-based eclipse photometry

    Full text link
    Until recently, it was considered by many that ground-based photometry could not reach the high cadence sub-mmag regime because of the presence of the atmosphere. Indeed, high frequency atmospheric noises (mainly scintillation) limit the precision that high SNR photometry can reach within small time bins. If one is ready to damage the sampling of his photometric time-series, binning the data (or using longer exposures) allows to get better errors, but the obtained precision will be finally limited by low frequency noises. To observe several times the same planetary eclipse and to fold the photometry with the orbital period is thus generally considered as the only option to get very well sampled and precise eclipse light curve from the ground. Nevertheless, we show here that reaching the sub-mmag sub-min regime for one eclipse is possible with a ground-based instrument. This has important implications for transiting planets characterization, secondary eclipses measurement and small planets detection from the ground.Comment: Transiting Planets Proceeding IAU Symposium No.253, 2008. 7 pages, 4 figure

    Planetary Phase Variations of the 55 Cancri System

    Get PDF
    Characterization of the composition, surface properties, and atmospheric conditions of exoplanets is a rapidly progressing field as the data to study such aspects become more accessible. Bright targets, such as the multi-planet 55 Cancri system, allow an opportunity to achieve high signal-to-noise for the detection of photometric phase variations to constrain the planetary albedos. The recent discovery that that inner-most planet, 55 Cancri e, transits the host star introduces new prospects for studying this system. Here we calculate photometric phase curves at optical wavelengths for the system with varying assumptions for the surface and atmospheric properties of 55 Cancri e. We show that the large differences in geometric albedo allows one to distinguish between various surface models, that the scattering phase function cannot be constrained with foreseeable data, and that planet b will contribute significantly to the phase variation depending upon the surface of planet e. We discuss detection limits and how these models may be used with future instrumentation to further characterize these planets and distinguish between various assumptions regarding surface conditions.Comment: 7 pages, 3 figures, accepted for publication in Ap

    Measuring and processing in-cylinder measurements of NO and OH obtained by laser-induced fluorescence in a diesel rapid compression machine

    Get PDF
    A strong argument culture is characterized by at least five productive tensions, between: commitment and contingency, partisanship and restraint, personal conviction and sensitivity to the audience, reasonableness and subjectivity, and decision and non-closure. Differences in how communities manage these tensions explain why there are multiple argument cultures and, hence, why we need to understand arguing both within and among different cultures. The paper elaborates these five productive tensions, offers some examples of argument cultures that negotiate them in various ways, and considers what it means to argue across cultures in a world that is both increasingly diverse and increasingly atomized

    Exploring hail and lightning diagnostics over the Alpine-Adriatic region in a km-scale climate model

    Get PDF
    The north and south of the Alps, as well as the eastern shores of the Adriatic Sea, are hot spots of severe convective storms, including hail and lightning associated with deep convection. With advancements in computing power, it has become feasible to simulate deep convection explicitly in climate models by decreasing the horizontal grid spacing to less than 4 km. These kilometer-scale models improve the representation of orography and reduce uncertainties associated with the use of deep convection parameterizations. In this study, we perform km-scale simulations for eight observed cases of severe convective storms (seven with and one without observed hail) over the Alpine-Adriatic region. The simulations are performed with the climate version of the regional model Consortium for Small-scale Modeling (COSMO) that runs on graphics processing units (GPUs) at a horizontal grid spacing of 2.2 km. To analyze hail and lightning we have explored the hail growth model (HAILCAST) and lightning potential index (LPI) diagnostics integrated with the COSMO-crCLIM model. Comparison with available high-resolution observations reveals good performance of the model in simulating total precipitation, hail, and lightning. By performing a detailed analysis of three of the case studies, we identified the importance of significant meteorological factors for heavy thunderstorms that were reproduced by the model. Among these are the moist unstable boundary layer and dry mid-level air, the topographic barrier, as well as an approaching upper-level trough and cold front. Although COSMO HAILCAST tends to underestimate the hail size on the ground, the results indicate that both HAILCAST and LPI are promising candidates for future climate research.</p

    Adaptive Optics Images of Kepler Objects of Interest

    Get PDF
    All transiting planets are at risk of contamination by blends with nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or produce a false positive detection when the target star is blended with eclipsing binary stars. This paper reports on high spatial-resolution adaptive optics images of 90 Kepler planetary candidates. Companion stars are detected as close as 0.1 arcsec from the target star. Images were taken in the near-infrared (J and Ks bands) with ARIES on the MMT and PHARO on the Palomar Hale 200-inch. Most objects (60%) have at least one star within 6 arcsec separation and a magnitude difference of 9. Eighteen objects (20%) have at least one companion within 2 arcsec of the target star; 6 companions (7%) are closer than 0.5 arcsec. Most of these companions were previously unknown, and the associated planetary candidates should receive additional scrutiny. Limits are placed on the presence of additional companions for every system observed, which can be used to validate planets statistically using the BLENDER method. Validation is particularly critical for low-mass, potentially Earth-like worlds, which are not detectable with current-generation radial velocity techniques. High-resolution images are thus a crucial component of any transit follow-up program.Comment: 9 pages, 4 figures, accepted to A

    Weak evidence for variable occultation depth of 55 Cnc e with TESS

    Get PDF
    55 Cnc e is in a 0.73 day orbit transiting a Sun-like star. It has been observed that the occultation depth of this Super-Earth, with a mass of 8MM_{\bigoplus} and radius of 2RR_{\bigoplus}, changes significantly over time at mid-infrared wavelengths. Observations with Spitzer measured a change in its day-side brightness temperature of 1200 K, possibly driven by volcanic activity, magnetic star-planet interaction, or the presence of a circumstellar torus of dust. Previous evidence for the variability in occultation was in the infrared range. Here we aim to explore if the variability exists also in the optical. TESS observed 55 Cnc during sectors 21, 44 and 46. We carefully detrend the data and fit a transit and occultation model for each sector in a Markov Chain Monte Carlo routine. In a later stage we use the Leave-One-Out Cross-Validation statistic to compare with a model of constant occultation for the complete set and a model with no occultation. We report an occultation depth of 8±\pm2.5 ppm for the complete set of TESS observations. In particular, we measured a depth of 15±\pm4 ppm for sector 21, while for sector 44 we detect no occultation. In sector 46 we measure a weak occultation of 8±\pm5 ppm. The occultation depth varies from one sector to the next between 1.6 and 3.4 σ\sigma significance. We derive the possible contribution on reflected light and thermal emission, setting an upper limit on the geometric albedo. Based on our model comparison the presence of an occultation is favoured considerably over no occultation, where the model with varying occultation across sectors takes most of the statistical weight. Our analysis confirms a detection of the occultation in TESS. Moreover, our results weakly lean towards a varying occultation depth between each sector, while the transit depth is constant across visits.Comment: 9 pages, 9 figures, accepted for publication on A&

    Transit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star

    Get PDF
    Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition. We present here the confirmation, based on Spitzer transit observations, that the super-Earth HD 97658 b transits its host star. HD 97658 is a low-mass (M=0.77±0.05MM_*=0.77\pm0.05\,M_{\odot}) K1 dwarf, as determined from the Hipparcos parallax and stellar evolution modeling. To constrain the planet parameters, we carry out Bayesian global analyses of Keck-HIRES radial velocities, and MOST and Spitzer photometry. HD 97658 b is a massive (MP=7.550.79+0.83MM_P=7.55^{+0.83}_{-0.79} M_{\oplus}) and large (RP=2.2470.095+0.098RR_{P} = 2.247^{+0.098}_{-0.095} R_{\oplus} at 4.5 μ\mum) super-Earth. We investigate the possible internal compositions for HD 97658 b. Our results indicate a large rocky component, by at least 60% by mass, and very little H-He components, at most 2% by mass. We also discuss how future asteroseismic observations can improve the knowledge of the HD 97658 system, in particular by constraining its age. Orbiting a bright host star, HD 97658 b will be a key target for coming space missions TESS, CHEOPS, PLATO, and also JWST, to characterize thoroughly its structure and atmosphere.Comment: 8 figures, accepted to Ap
    corecore