708 research outputs found
Exploring perinatal asphyxia by metabolomics
Brain damage related to perinatal asphyxia is the second cause of neuro-disability worldwide. Its incidence was estimated in 2010 as 8.5 cases per 1000 live births worldwide, with no further recent improvement even in more industrialized countries. If so, hypoxic-ischemic encephalopathy is still an issue of global health concern. It is thought that a consistent number of cases may be avoided, and its sequelae may be preventable by a prompt and efficient physical and therapeutic treatment. The lack of early, reliable, and specific biomarkers has up to now hampered a more effective use of hypothermia, which represents the only validated therapy for this condition. The urge to unravel the biological modifications underlying perinatal asphyxia and hypoxic-ischemic encephalopathy needs new diagnostic and therapeutic tools. Metabolomics for its own features is a powerful approach that may help for the identification of specific metabolic profiles related to the pathological mechanism and foreseeable outcome. The metabolomic profiles of animal and human infants exposed to perinatal asphyxia or developing hypoxic-ischemic encephalopathy have so far been investigated by means of 1H nuclear magnetic resonance spectroscopy and mass spectrometry coupled with gas or liquid chromatography, leading to the identification of promising metabolomic signatures. In this work, an extensive review of the relevant literature was performed
A Fatal Case of Metastatic Pulmonary Calcification during the Puerperium
We present an unusual case of a fatal respiratory failure in a young woman developed two weeks after she gave birth at home. Circumstantial and clinical features of the case were strongly suggestive for a 'classical' septic origin of the respiratory symptoms. Autopsy, together with histopathological and immunohistochemical analyses allowed demonstrating a massive calcium redistribution consisting of an important osteolysis, especially from cranial bones and abnormal accumulation in lungs and other organs. Such physiopathology was driven by a primary hyperparathyroidism secondary to a parathyroid carcinoma as demonstrated by immunohistochemistry. This very rare case is furthermore characterised by a regular pregnancy course, ended with the birth of a healthy new-born. A complex interaction between pregnancy physiology and hyperparathyroidism might be hypothesised, determining the discrepancy between the relative long period of wellness and the tumultuous cascade occurred in the puerperium
Exact solutions to the focusing nonlinear Schrodinger equation
A method is given to construct globally analytic (in space and time) exact
solutions to the focusing cubic nonlinear Schrodinger equation on the line. An
explicit formula and its equivalents are presented to express such exact
solutions in a compact form in terms of matrix exponentials. Such exact
solutions can alternatively be written explicitly as algebraic combinations of
exponential, trigonometric, and polynomial functions of the spatial and
temporal coordinates.Comment: 60 pages, 18 figure
Measuring thermal conductivity of nanostructures with the 3ω method: the need for finite element modeling
Conventional techniques of measuring thermal transport properties may be unreliable or unwieldy when applied to nanostructures. However, a simple, all-electrical technique is available for all samples featuring high-aspect-ratio: the 3? method. Nonetheless, its usual formulation relies on simple analytical results which may break down in real experimental conditions. In this work we clarify these limits and quantify them via adimensional numbers and present a more accurate, numerical solution to the 3? problem based on the Finite Element Method (FEM). Finally, we present a comparison of the two methods on experimental datasets from InAsSb nanostructures with different thermal transport properties, to stress the crucial need of a FEM counterpart to 3? measurements in nanostructures with low thermal conductivity
Exact Solutions to the Sine-Gordon Equation
A systematic method is presented to provide various equivalent solution
formulas for exact solutions to the sine-Gordon equation. Such solutions are
analytic in the spatial variable and the temporal variable and they
are exponentially asymptotic to integer multiples of as
The solution formulas are expressed explicitly in terms of a real triplet of
constant matrices. The method presented is generalizable to other integrable
evolution equations where the inverse scattering transform is applied via the
use of a Marchenko integral equation. By expressing the kernel of that
Marchenko equation as a matrix exponential in terms of the matrix triplet and
by exploiting the separability of that kernel, an exact solution formula to the
Marchenko equation is derived, yielding various equivalent exact solution
formulas for the sine-Gordon equation.Comment: 43 page
Comparative use of aqueous humour 1H NMR metabolomics and potassium concentration for PMI estimation in an animal model
Estimation of the post-mortem interval (PMI) remains a matter of concern in the forensic scenario. Traditional and novel approaches are not yet able to fully address this issue, which relies on complex biological phenomena triggered by death. For this purpose, eye compartments may be chosen for experimental studies because they are more resistant to post-mortem modifications. Vitreous humour, in particular, has been extensively investigated, with potassium concentration ([K+]) being the marker that is better correlated with PMI estimation. Recently, a 1H nuclear magnetic resonance (NMR) metabolomic approach based on aqueous humour (AH) from an animal model was proposed for PMI estimation, resulting in a robust and validated regression model. Here we studied the variation in [K+] in the same experimental setup. [K+] was determined through capillary ion analysis (CIA) and a regression analysis was performed. Moreover, it was investigated whether the PMI information related to potassium could improve the metabolome predictive power in estimating the PMI. Interestingly, we found that a part of the metabolomic profile is able to explain most of the information carried by potassium, suggesting that the rise in both potassium and metabolite concentrations relies on a similar biological mechanism. In the first 24-h PMI window, the AH metabolomic profile shows greater predictive power than [K+] behaviour, suggesting its potential use as an additional tool for estimating the time since death
The human major sublingual gland and its neuropeptidergic and nitrergic innervations
Background: What textbooks usually call the sublingual gland in humans is in reality a tissue mass of two types of salivary glands, the anteriorly located consisting of a cluster of minor sublingual glands and the posteriorly located major sublingual gland with its outlet via Bartholin's duct. Only recently, the adrenergic and cholinergic innervations of the major sublingual gland was reported, while information regarding the neuropeptidergic and nitrergic innervations is still lacking. Methods: Bioptic and autoptic specimens of the human major sublingual gland were examined by means of immunohistochemistry for the presence of vasoactive intestinal peptide (VIP)-, neuropeptide Y (NPY)-, substance P (SP)-, calcitonin gene related-peptide (CGRP)-, and neuronal nitric oxide synthase (nNOS)-labeled neuronal structures. Results: As to the neuropeptidergic innervation of secretory cells (here in the form of mucous tubular and seromucous cells), the findings showed many VIP-containing nerves, few NPY- and SP-containing nerves and a lack of CGRP-labeled nerves. As to the neuropeptidergic innervation of vessels, the number of VIP-containing nerves was modest, while, of the other neuropeptide-containing nerves under study, only few (SP and CGRP) to very few (NPY) nerves were observed. As to the nitrergic innervation, nNOS-containing nerves were very few close to secretory cells and even absent around vessels. Conclusion: The various innervation patterns may suggest potential transmission mechanisms involved in secretory and vascular responses of the major sublingual gland
- …