59 research outputs found

    Depleted Calcium Stores and Increased Calcium Entry in Rod Photoreceptors of the Cacna2d4 Mouse Model of Cone-Rod Dystrophy RCD4

    Get PDF
    Unidentified pathogenetic mechanisms and genetic and clinical heterogeneity represent critical factors hindering the development of treatments for inherited retinal dystrophies. Frameshift mutations in Cacna2d4, which codes for an accessory subunit of voltage-gated calcium channels (VGCC), cause cone-rod dystrophy RCD4 in patients, but the underlying mechanisms remain unknown. To define its pathogenetic mechanisms, we investigated the impact of a Cacna2d4 frameshift mutation on the electrophysiological profile and calcium handling of mouse rod photoreceptors by patch-clamp recordings and calcium imaging, respectively. In mutant (MUT) rods, the dysregulation of calcium handling extends beyond the reduction in calcium entry through VGCC and surprisingly involves internal calcium stores' depletion and upregulation of calcium entry via non-selective cationic channels (CSC). The similar dependence of CSC on basal calcium levels in WT and MUT rods suggests that the primary defect in MUT rods lies in defective calcium stores. Calcium stores' depletion, leading to upregulated calcium and sodium influx via CSC, represents a novel and, so far, unsuspected consequence of the Cacna2d4 mutation. Blocking CSC may provide a novel strategy to counteract the well-known pathogenetic mechanisms involved in rod demise, such as the reticulum stress response and calcium and sodium overload due to store depletion

    Analysis of pharmacologically isolated components of the ERG

    Get PDF
    AbstractAn harmonic analysis was applied to the electroretinogram (ERG) measured in intact cat eyes in control conditions and after pharmacological isolation of the components attributed to photoreceptors (PIII) and bipolar neurons (PII). The frequency response curves obtained in various conditions showed that the bandwidth of the PII component extends over a range of stimulus frequencies higher than the bandwidth of PIII. The enhancement of the PII response to stimuli of high temporal frequency suggests the presence of a frequency dependent gain control located either pre- and/or post-synaptically in the transmission line between the phototransductive cascade and bipolar neurons. A possible role of these processes is to enhance relevant visual information whilst selectively attenuating low frequency signals originating in the transductive cascade

    Electrophysiological profile remodeling via selective suppression of voltage-gated currents by CLN1/PPT1 overexpression in human neuronal-like cells.

    Get PDF
    CLN1 disease (OMIM #256730) is an inherited neurological disorder of early childhood with epileptic seizures and premature death. It is associated with mutations in CLN1 coding for Palmitoyl-Protein Thioesterase 1 (PPT1), a lysosomal enzyme which affects the recycling and degradation of lipid-modified (S-acylated) proteins by removing palmitate residues. Transcriptomic evidence from a neuronal-like cellular model derived from differentiated SH-SY5Y cells disclosed the potential negative roles of CLN1 overexpression, affecting the elongation of neuronal processes and the expression of selected proteins of the synaptic region. Bioinformatic inquiries of transcriptomic data pinpointed a dysregulated expression of several genes coding for proteins related to voltage-gated ion channels, including subunits of calcium and potassium channels (VGCC and VGKC). In SH-SY5Y cells overexpressing CLN1 (SH-CLN1 cells), the resting potential and the membrane conductance in the range of voltages close to the resting potential were not affected. However, patch-clamp recordings indicated a reduction of Ba2+ currents through VGCC of SH-CLN1 cells; Ca2+ imaging revealed reduced Ca2+ influx in the same cellular setting. The results of the biochemical and morphological investigations of CACNA2D2/α2δ-2, an accessory subunit of VGCC, were in accordance with the downregulation of the corresponding gene and consistent with the hypothesis that a lower number of functional channels may reach the plasma membrane. The combined use of 4-AP and NS-1643, two drugs with opposing effects on Kv11 and Kv12 subfamilies of VGKC coded by the KCNH gene family, provides evidence for reduced functional Kv12 channels in SH-CLN1 cells, consistent with transcriptomic data indicating the downregulation of KCNH4. The lack of compelling evidence supporting the palmitoylation of many ion channels subunits investigated in this study stimulates inquiries about the role of PPT1 in the trafficking of channels to the plasma membrane. Altogether, these results indicate a reduction of functional voltage-gated ion channels in response to CLN1/PPT1 overexpression in differentiated SH-SY5Y cells and provide new insights into the altered neuronal excitability which may underlie the severe epileptic phenotype of CLN1 disease. It remains to be shown if remodeling of such functional channels on plasma membrane can occur as a downstream effect of CLN1 disease.Peer reviewe

    A new splicing isoform of Cacna2d4 mimicking the effects of c.2451insC mutation in the retina: Novel molecular and electrophysiological insights

    Get PDF
    PURPOSE. Mutations in CACNA2D4 exon 25 cause photoreceptor dysfunction in humans (c.2406CA mutation) and mice (c.2451insC mutation). We investigated the feasibility of an exon-skipping therapeutic approach by evaluating the splicing patterns and functional role of targeted exons. METHODS. Splicing of the targeted a2d4 (CACNA2D4) exons in presence and absence of the mutation was assessed by RT-PCR in vivo on mouse retinae and in vitro in HEK293T cells using splicing-reporter minigenes. Whole-cell patch-clamp recordings were performed to evaluate the impact of different Cacna2d4 variants on the biophysical properties of Cav1.4 Ltype calcium channels (CACNA1F). RESULTS. Splicing analysis revealed the presence of a previously unknown splicing isoform of a2d4 in the retina that truncates the gene open reading frame (ORF) in a similar way as the c.2451insC mutation. This isoform originates from alternative splicing of exon 25 (E25) with a new exon (E25b). Moreover, the c.2451insC mutation has an effect on splicing and increases the proportion of transcripts including E25b. Our electrophysiological analyses showed that only full-length a2d4 was able to increase Cav1.4/b3-mediated currents while all other a2d4 variants did not mediate such effect. CONCLUSIONS. The designed exon-skipping strategy is not applicable because the resulting skipped a2d4 are nonfunctional. a2d4 E25b splicing variant is normally present in mouse retina and mimics the effect of c.2451insC mutation. Since this variant does not promote significant Cav1.4-mediated calcium current, it could possibly mediate a different function, unrelated to modulation of calcium channel properties at the photoreceptor terminals

    Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery

    Get PDF
    P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifi

    Increasing cell culture density during a developmental window prevents fated rod precursors derailment toward hybrid rod-glia cells

    Get PDF
    : In proliferating multipotent retinal progenitors, transcription factors dynamics set the fate of postmitotic daughter cells, but postmitotic cell fate plasticity driven by extrinsic factors remains controversial. Transcriptome analysis reveals the concurrent expression by postmitotic rod precursors of genes critical for the MĂĽller glia cell fate, which are rarely generated from terminally-dividing progenitors as a pair with rod precursors. By combining gene expression and functional characterisation in single cultured rod precursors, we identified a time-restricted window where increasing cell culture density switches off the expression of genes critical for MĂĽller glial cells. Intriguingly, rod precursors in low cell culture density maintain the expression of genes of rod and glial cell fate and develop a mixed rod/Muller glial cells electrophysiological fingerprint, revealing rods derailment toward a hybrid rod-glial phenotype. The notion of cell culture density as an extrinsic factor critical for preventing rod-fated cells diversion toward a hybrid cell state may explain the occurrence of hybrid rod/MG cells in the adult retina and provide a strategy to improve engraftment yield in regenerative approaches to retinal degenerative disease by stabilising the fate of grafted rod precursors

    High-Pass Filtering of Input Signals by the Ih Current in a Non-Spiking Neuron, the Retinal Rod Bipolar Cell

    Get PDF
    Hyperpolarization–activated cyclic nucleotide–sensitive (HCN) channels mediate the If current in heart and Ih throughout the nervous system. In spiking neurons Ih participates primarily in different forms of rhythmic activity. Little is known, however, about its role in neurons operating with graded potentials as in the retina, where all four channel isoforms are expressed. Intriguing evidence for an involvement of Ih in early visual processing are the side effects reported, in dim light or darkness, by cardiac patients treated with HCN inhibitors. Moreover, electroretinographic recordings indicate that these drugs affect temporal processing in the outer retina. Here we analyzed the functional role of HCN channels in rod bipolar cells (RBCs) of the mouse. Perforated–patch recordings in the dark–adapted slice found that RBCs exhibit Ih, and that this is sensitive to the specific blocker ZD7288. RBC input impedance, explored by sinusoidal frequency–modulated current stimuli (0.1–30 Hz), displays band–pass behavior in the range of Ih activation. Theoretical modeling and pharmacological blockade demonstrate that high–pass filtering of input signals by Ih, in combination with low–pass filtering by passive properties, fully accounts for this frequency–tuning. Correcting for the depolarization introduced by shunting through the pipette–membrane seal, leads to predict that in darkness Ih is tonically active in RBCs and quickens their responses to dim light stimuli. Immunohistochemistry targeting candidate subunit isoforms HCN1–2, in combination with markers of RBCs (PKC) and rod–RBC synaptic contacts (bassoon, mGluR6, Kv1.3), suggests that RBCs express HCN2 on the tip of their dendrites. The functional properties conferred by Ih onto RBCs may contribute to shape the retina's light response and explain the visual side effects of HCN inhibitors

    Endocrine adaptations across physical and psychological stressors in long-term space flights

    No full text
    The human body needs to adapt to both psychological pressure and physical stressors, such as radiation and microgravity, to cope with the extreme environment represented by a long-term spaceflight. Resolving the relative contributions of physical and psychological stressors and the mechanisms underlying adaptation remains critical for devising effective countermeasures addressing the health and well-being of humans heading to prospective deep-space exploratory-class missions. In the present short review, we discuss recent evidence on the complex role of novel players linking the response to physical and psychological stressors with health-impacting consequences of long-term space flights, such as bone loss and dysregulated immune response

    HCN1 channels: A versatile tool for signal processing by primary sensory neurons

    No full text
    Most primary sensory neurons (PSNs) generate a slowly-activating inward current in response to membrane hyperpolarization (Ih) and express HCN1 along with additional isoforms coding for hyperpolarization-activated channels (HCN). Changes in HCN expression may affect the excitability and firing patterns of PSNs, but retinal and inner ear PSNs do not fire action potentials, suggesting HCN channel roles may extend beyond excitability and cell firing control. In patients taking Ih blockers, photopsia triggered in response to abrupt changes in luminance correlates with impaired visual signal processing via parallel rod and cone pathways. Furthermore, in a mouse model of inherited retinal degeneration, HCN blockers or Hcn1 genetic ablation may worsen photoreceptors' demise. PSN's use of HCN channels to adjust either their firing rate or process signals generated by sensory transduction in non-spiking PSNs indicates HCN1 channels as a versatile tool with a novel role in sensory processing beyond firing control

    Light sensitivity, adaptation and saturation in mammalian rods

    No full text
    This chapter discusses the absolute sensitivity, background desensitization, and saturation in guinea-pig rods. The principal purpose of this study is to establish the extent and the conditions for rod adaptation in mammals and compare them with those of lower vertebrates. In agreement with a recent report, it was found that guinea pig rods possess adaptation properties qualitatively similar to those of amphibian rods. It was also found that light-adapted guinea-pig rods may efficiently signal light changes up to background levels that for a human subject would be equivalent to ambient illuminations of over l03 candles (cd)/m2. Considering that a dark-adapted rod may generate a detectable response to the absorption of a few photons, the range of light intensity over which a single rod may efficiently contribute to vision covers more than 4 log units
    • …
    corecore