21 research outputs found

    Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry

    Get PDF
    Paper spray ionization coupled to a high resolution tandem mass spectrometer (a quadrupole orbitrap) was used to identify and quantitate chemical warfare agent (CWA) simulants and their hydrolysis products in blood and urine. Three CWA simulants, dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), and diisopropyl methylphosphonate (DIMP), and their isotopically labeled standards were analyzed in human whole blood and urine. Calibration curves were generated and tested with continuing calibration verification standards. Limits of detection for these three compounds were in the low ng mL−1 range for the direct analysis of both blood and urine samples. Five CWA hydrolysis products, ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA), isobutyl methylphosphonic acid (iBuMPA), cyclohexyl methylphosphonic acid (CHMPA), and pinacolyl methylphosphonic acid (PinMPA), were also analyzed. Calibration curves were generated in both positive and negative ion modes. Limits of detection in the negative ion mode ranged from 0.36 ng mL−1 to 1.25 ng mL−1 in both blood and urine for the hydrolysis products. These levels were well below those found in victims of the Tokyo subway attack of 2 to 135 ng mL−1. Improved stability and robustness of the paper spray technique in the negative ion mode was achieved by the addition of chlorinated solvents. These applications demonstrate that paper spray mass spectrometry (PS-MS) can be used for rapid, sample preparation-free detection of chemical warfare agents and their hydrolysis products at physiologically relevant concentrations in biological samples

    Direct Analysis of Aerosolized Chemical Warfare Simulants Captured on a Modified Glass-Based Substrate by “Paper-Spray” Ionization

    Get PDF
    Paper spray ionization mass spectrometry offers a rapid alternative platform requiring no sample preparation. Aerosolized chemical warfare agent (CWA) simulants trimethyl phosphate, dimethyl methylphosphonate, and diisopropyl methylphosphonate were captured by passing air through a glass fiber filter disk within a disposable paper spray cartridge. CWA simulants were aerosolized at varying concentrations using an in-house built aerosol chamber. A custom 3D-printed holder was designed and built to facilitate the aerosol capture onto the paper spray cartridges. The air flow through each of the collection devices was maintained equally to ensure the same volume of air sampled across methods. Each approach yielded linear calibration curves with R2 values between 0.98–0.99 for each compound and similar limits of detection in terms of disbursed aerosol concentration. While the glass fiber filter disk has a higher capture efficiency (≈40%), the paper spray method produces analogous results even with a lower capture efficiency (≈1%). Improvements were made to include glass fiber filters as the substrate within the paper spray cartridge consumable. Glass fiber filters were then treated with ammonium sulfate to decrease chemical interaction with the simulants. This allowed for improved direct aerosol capture efficiency (>40%). Ultimately, the limits of detection were reduced to levels comparable to current worker population limits of 1 × 10–6 mg/m3

    Paper Spray Ionization: Applications and Perspectives

    Get PDF
    Paper spray ionization has grown to become one of the most successful ambient ionization methods within the past decade. Requiring little to no sample preparation and being remarkably simple to construct, this technique has seen application in a wide number of fields. This review approaches the mechanism of how paper spray works, and seeks to better classify what it is and is not in a rapidly expanding field of ambient techniques. Additionally, many applications of the technique in clinical, forensic, environmental, and reaction monitoring regimes are explored. Finally, perspectives towards the future of how paper spray could be utilized will be expanded upon, including unexplored substrates and possibilities for the 'omics space

    Deep Sequencing of the Murine Olfactory Receptor Neuron Transcriptome

    Get PDF
    The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation

    Expression patterns of genes involved in cAMP-dependent signaling.

    No full text
    <p><b>A.</b> Expression patterns of cyclic nucleotide phosphodiesterase (PDE) genes. Heatmap showing the expression levels of PDEs in olfactory tissue and non-olfactory tissues (brain, liver, muscle and testes). <b>B</b>. Expression patterns of cAMP-dependent protein kinases and associated regulatory proteins in olfactory tissue and non-olfactory tissues (brain, liver, muscle and testes). Higher FPKM values are indicated by deeper colors.</p

    Expression pattern of chemoreceptor genes.

    No full text
    <p>Heatmap showing the expression levels of the following chemoreceptor classes: TAARs, VNO receptors, GC-D, taste receptors and FPR in olfactory (male and female OE, and FACS-sorted ORNs) and non-olfactory tissue (brain, muscle, liver and testes). Higher FPKM values are indicated by deeper colors. Only genes with a FPKMs >1 are represented in this chart.</p
    corecore