18 research outputs found

    Validation of an enzyme-linked immunosorbent assay for the quantification of human IgG directed against the repeat region of the circumsporozoite protein of the parasite Plasmodium falciparum.

    Get PDF
    BACKGROUND: Several pre-erythrocytic malaria vaccines based on the circumsporozoite protein (CSP) antigen of Plasmodium falciparum are in clinical development. Vaccine immunogenicity is commonly evaluated by the determination of anti-CSP antibody levels using IgG-based assays, but no standard assay is available to allow comparison of the different vaccines. METHODS: The validation of an anti-CSP repeat region enzyme-linked immunosorbent assay (ELISA) is described. This assay is based on the binding of serum antibodies to R32LR, a recombinant protein composed of the repeat region of P. falciparum CSP. In addition to the original recombinant R32LR, an easy to purify recombinant His-tagged R32LR protein has been constructed to be used as solid phase antigen in the assay. Also, hybridoma cell lines have been generated producing human anti-R32LR monoclonal antibodies to be used as a potential inexhaustible source of anti-CSP repeats standard, instead of a reference serum. RESULTS: The anti-CSP repeats ELISA was shown to be robust, specific and linear within the analytical range, and adequately fulfilled all validation criteria as defined in the ICH guidelines. Furthermore, the coefficient of variation for repeatability and intermediate precision did not exceed 23%. Non-interference was demonstrated for R32LR-binding sera, and the assay was shown to be stable over time. CONCLUSIONS: This ELISA, specific for antibodies directed against the CSP repeat region, can be used as a standard assay for the determination of humoral immunogenicity in the development of any CSP-based P. falciparum malaria vaccine

    An Adjuvanted Polyprotein HIV-1 Vaccine Induces Polyfunctional Cross-Reactive CD4+ T Cell Responses in Seronegative Volunteers

    Get PDF
    A novel AS01-adjuvanted HIV-1 vaccine candidate consisting of a recombinant fusion protein (F4) containing 4 HIV-1 clade B antigens (Gag p24, Pol reverse transcriptase [RT], Nef and Gag p17) induced long-lasting, polyfunctional cross-reactive CD4+ T-cell responses in HIV-seronegative volunteers

    Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age.

    Get PDF
    BACKGROUND: Plasmodium falciparum malaria is a pressing global health problem. A previous study of the malaria vaccine RTS,S (which targets the circumsporozoite protein), given with an adjuvant system (AS02A), showed a 30% rate of protection against clinical malaria in children 1 to 4 years of age. We evaluated the efficacy of RTS,S given with a more immunogenic adjuvant system (AS01E) in children 5 to 17 months of age, a target population for vaccine licensure. METHODS: We conducted a double-blind, randomized trial of RTS,S/AS01E vaccine as compared with rabies vaccine in children in Kilifi, Kenya, and Korogwe, Tanzania. The primary end point was fever with a falciparum parasitemia density of more than 2500 parasites per microliter, and the mean duration of follow-up was 7.9 months (range, 4.5 to 10.5). RESULTS: A total of 894 children were randomly assigned to receive the RTS,S/AS01E vaccine or the control (rabies) vaccine. Among the 809 children who completed the study procedures according to the protocol, the cumulative number in whom clinical malaria developed was 32 of 402 assigned to receive RTS,S/AS01E and 66 of 407 assigned to receive the rabies vaccine; the adjusted efficacy rate for RTS,S/AS01E was 53% (95% confidence interval [CI], 28 to 69; P<0.001) on the basis of Cox regression. Overall, there were 38 episodes of clinical malaria among recipients of RTS,S/AS01E, as compared with 86 episodes among recipients of the rabies vaccine, with an adjusted rate of efficacy against all malarial episodes of 56% (95% CI, 31 to 72; P<0.001). All 894 children were included in the intention-to-treat analysis, which showed an unadjusted efficacy rate of 49% (95% CI, 26 to 65; P<0.001). There were fewer serious adverse events among recipients of RTS,S/AS01E, and this reduction was not only due to a difference in the number of admissions directly attributable to malaria. CONCLUSIONS: RTS,S/AS01E shows promise as a candidate malaria vaccine. (ClinicalTrials.gov number, NCT00380393.

    Evaluation of the Safety and Immunogenicity of the RTS,S/AS01E Malaria Candidate Vaccine When Integrated in the Expanded Program of Immunization

    Get PDF
    Background. The RTS,S/AS01E malaria candidate vaccine is being developed for immunization of African infants through the Expanded Program of Immunization (EPI). Methods. This phase 2, randomized, open, controlled trial conducted in Ghana, Tanzania, and Gabon evaluated the safety and immunogenicity of RTS,S/AS01E when coadministered with EPI vaccines. Five hundred eleven infants were randomized to receive RTS,S/AS01E at 0, 1, and 2 months (in 3 doses with diphtheria, tetanus, and wholecell pertussis conjugate [DTPw]; hepatitis B [HepB]; Haemophilus influenzae type b [Hib]; and oral polio vaccine [OPV]), RTS,S/AS01E at 0, 1, and 7 months (2 doses with DTPwHepB/Hib+OPV and 1 dose with measles and yellow fever), or EPI vaccines only. Results. The occurrences of serious adverse events were balanced across groups; none were vaccine-related. One child from the control group died. Mild to moderate fever and diaper dermatitis occurred more frequently in the RTS,S/AS01E coadministration groups. RTS,S/AS01E generated high anti-circumsporozoite protein and anti- hepatitis B surface antigen antibody levels. Regarding EPI vaccine responses upon coadministration when considering both immunization schedules, despite a tendency toward lower geometric mean titers to some EPI antigens, predefined noninferiority criteria were met for all EPI antigens except for polio 3 when EPI vaccines were given with RTS,S/AS01E at 0, 1, and 2 months. However, when antibody levels at screening were taken into account, the rates of response to polio 3 antigens were comparable between groups. Conclusion. RTS,S/AS01E integrated in the EPI showed a favorable safety and immunogenicity evaluation. Trial registration. ClinicalTrials.gov identifier: NCT00436007. GlaxoSmithKline study ID number: 106369 (Malaria-050

    Phase 2b Controlled Trial of M72/AS01E Vaccine to Prevent Tuberculosis.

    Get PDF
    BACKGROUND: A vaccine to interrupt the transmission of tuberculosis is needed. METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 2b trial of the M72/AS01E tuberculosis vaccine in Kenya, South Africa, and Zambia. Human immunodeficiency virus (HIV)-negative adults 18 to 50 years of age with latent M. tuberculosis infection (by interferon-γ release assay) were randomly assigned (in a 1:1 ratio) to receive two doses of either M72/AS01E or placebo intramuscularly 1 month apart. Most participants had previously received the bacille Calmette-Guérin vaccine. We assessed the safety of M72/AS01E and its efficacy against progression to bacteriologically confirmed active pulmonary tuberculosis disease. Clinical suspicion of tuberculosis was confirmed with sputum by means of a polymerase-chain-reaction test, mycobacterial culture, or both. RESULTS: We report the primary analysis (conducted after a mean of 2.3 years of follow-up) of the ongoing trial. A total of 1786 participants received M72/AS01E and 1787 received placebo, and 1623 and 1660 participants in the respective groups were included in the according-to-protocol efficacy cohort. A total of 10 participants in the M72/AS01E group met the primary case definition (bacteriologically confirmed active pulmonary tuberculosis, with confirmation before treatment), as compared with 22 participants in the placebo group (incidence, 0.3 cases vs. 0.6 cases per 100 person-years). The vaccine efficacy was 54.0% (90% confidence interval [CI], 13.9 to 75.4; 95% CI, 2.9 to 78.2; P=0.04). Results for the total vaccinated efficacy cohort were similar (vaccine efficacy, 57.0%; 90% CI, 19.9 to 76.9; 95% CI, 9.7 to 79.5; P=0.03). There were more unsolicited reports of adverse events in the M72/AS01E group (67.4%) than in the placebo group (45.4%) within 30 days after injection, with the difference attributed mainly to injection-site reactions and influenza-like symptoms. Serious adverse events, potential immune-mediated diseases, and deaths occurred with similar frequencies in the two groups. CONCLUSIONS: M72/AS01E provided 54.0% protection for M. tuberculosis-infected adults against active pulmonary tuberculosis disease, without evident safety concerns. (Funded by GlaxoSmithKline Biologicals and Aeras; ClinicalTrials.gov number, NCT01755598 .)

    Safety and immunogenicity of RTS,S/AS02D malaria vaccine in infants.

    Get PDF
    BACKGROUND: The RTS,S/AS malaria vaccine is being developed for delivery through the World Health Organization's Expanded Program on Immunization (EPI). We assessed the feasibility of integrating RTS,S/AS02D into a standard EPI schedule for infants. METHODS: In this phase 2B, single-center, double-blind, controlled trial involving 340 infants in Bagamoyo, Tanzania, we randomly assigned 340 infants to receive three doses of either the RTS,S/AS02D vaccine or the hepatitis B vaccine at 8, 12, and 16 weeks of age. All infants also received a vaccine containing diphtheria and tetanus toxoids, whole-cell pertussis vaccine, and conjugated Haemophilus influenzae type b vaccine (DTPw/Hib). The primary objectives were the occurrence of serious adverse events during a 9-month surveillance period and a demonstration of noninferiority of the responses to the EPI vaccines (DTPw/Hib and hepatitis B surface antigen) with coadministration of the RTS,S/AS02D vaccine, as compared with the hepatitis B vaccine. The detection of antibodies against Plasmodium falciparum circumsporozoite and efficacy against malaria infection were secondary objectives. RESULTS: At least one serious adverse event was reported in 31 of 170 infants who received the RTS,S/AS02D vaccine (18.2%; 95% confidence interval [CI], 12.7 to 24.9) and in 42 of 170 infants who received the hepatitis B vaccine (24.7%; 95% CI, 18.4 to 31.9). The results showed the noninferiority of the RTS,S/AS02D vaccine in terms of antibody responses to EPI antigens. One month after vaccination, 98.6% of infants receiving the RTS,S/AS02D vaccine had seropositive titers for anticircumsporozoite antibodies on enzyme-linked immunosorbent assay (ELISA). During the 6-month period after the third dose of vaccine, the efficacy of the RTS,S/AS02D vaccine against first infection with P. falciparum malaria was 65.2% (95% CI, 20.7 to 84.7; P=0.01). CONCLUSIONS: The use of the RTS,S/AS02D vaccine in infants had a promising safety profile, did not interfere with the immunologic responses to coadministered EPI antigens, and reduced the incidence of malaria infection. (ClinicalTrials.gov number, NCT00289185.

    Evaluation of the Safety and Immunogenicity of Two Antigen Concentrations of the Mtb72F/AS02A Candidate Tuberculosis Vaccine in Purified Protein Derivative-Negative Adults ▿ †

    Get PDF
    Tuberculosis (TB) remains a major cause of illness and death worldwide, making a new TB vaccine an urgent public health priority. Purified protein derivative (PPD)-negative adults (n = 50) were equally randomized to receive 3 doses at 1-month intervals (at 0, 1, and 2 months) of one of the following vaccines: Mtb72F/AS02A (10 or 40 μg antigen), Mtb72F/saline (10 or 40 μg antigen), or AS02A. Mtb72F/AS02A recipients received an additional dose 1 year after the first dose to evaluate if the elicited immune response could be boosted. Mtb72F/AS02A vaccines were locally reactogenic but clinically well tolerated, with transient adverse events (usually lasting between 1 and 4 days) that resolved without sequelae being observed. No vaccine-related serious adverse events were reported. Vaccination with Mtb72F/AS02A induced a strong Mtb72F-specific humoral response and a robust Mtb72F-specific CD4+ T-cell response, both of which persisted at 9 months after primary immunization and for 1 year after the booster immunization. There was no significant difference between the magnitude of the CD4+ T-cell response induced by the 10-μg and 40-μg Mtb72F/AS02A vaccines. The Mtb72F-specific CD4+ T cells predominantly expressed CD40L; CD40L and interleukin-2 (IL-2); CD40L and tumor necrosis factor alpha (TNF-α); CD40L, IL-2, and TNF-α; and CD40L, IL-2, TNF-α, and gamma interferon (IFN-γ). Serum IFN-γ, but not TNF-α, was detected 1 day after doses 2 and 3 for the Mtb72F/AS02A vaccine but did not persist. Vaccine-induced CD8+ T-cell responses were not detected, and no immune responses were elicited with AS02A alone. In conclusion, Mtb72F/AS02A is clinically well tolerated and is highly immunogenic in TB-naïve adults. The 10- and 40-μg Mtb72F/AS02A vaccines show comparable safety and immunogenicity profiles

    Validation of an enzyme-linked immunosorbent assay for the quantification of human IgG directed against the repeat region of the circumsporozoite protein of the parasite <it>Plasmodium falciparum</it>

    No full text
    Abstract Background Several pre-erythrocytic malaria vaccines based on the circumsporozoite protein (CSP) antigen of Plasmodium falciparum are in clinical development. Vaccine immunogenicity is commonly evaluated by the determination of anti-CSP antibody levels using IgG-based assays, but no standard assay is available to allow comparison of the different vaccines. Methods The validation of an anti-CSP repeat region enzyme-linked immunosorbent assay (ELISA) is described. This assay is based on the binding of serum antibodies to R32LR, a recombinant protein composed of the repeat region of P. falciparum CSP. In addition to the original recombinant R32LR, an easy to purify recombinant His-tagged R32LR protein has been constructed to be used as solid phase antigen in the assay. Also, hybridoma cell lines have been generated producing human anti-R32LR monoclonal antibodies to be used as a potential inexhaustible source of anti-CSP repeats standard, instead of a reference serum. Results The anti-CSP repeats ELISA was shown to be robust, specific and linear within the analytical range, and adequately fulfilled all validation criteria as defined in the ICH guidelines. Furthermore, the coefficient of variation for repeatability and intermediate precision did not exceed 23%. Non-interference was demonstrated for R32LR-binding sera, and the assay was shown to be stable over time. Conclusions This ELISA, specific for antibodies directed against the CSP repeat region, can be used as a standard assay for the determination of humoral immunogenicity in the development of any CSP-based P. falciparum malaria vaccine.</p
    corecore