64 research outputs found

    On a Tabling Engine That Can Exploit Or-Parallelism

    Full text link
    Abstract. Tabling is an implementation technique that improves the declarativeness and expressiveness of Prolog by reusing solutions to goals. Quite a few interesting applications of tabling have been developed in the last few years, and several are by nature non-deterministic. This raises the question of whether parallel search techniques can be used to improve the performance of tabled applications. In this work we demonstrate that the mechanisms proposed to parallelize search in the context of SLD resolution naturally generalize to parallel tabled computations, and that resulting systems can achieve good per-formance on multi-processors. To do so, we present the OPTYap par-allel engine. In our system individual SLG engines communicate data through stack copying. Completion is detected through a novel parallel completion algorithm that builds upon the data structures proposed for or-parallelism. Scheduling is simplified by building on previous research on or-parallelism. We show initial performance results for our implemen-tation. Our best result is for an actual application, model checking, where we obtain linear speedups

    A segment-swapping approach for executing trapped computations

    Get PDF
    We consider the problem of supporting goal-level, independent andparallelism (IAP) in the presence of non-determinism. IAP is exploited when two or more goals which will not interfere at run time are scheduled for simultaneous execution. Backtracking over non-deterministic parallel goals runs into the wellknown trapped goal and garbage slot problems. The proposed solutions for these problems generally require complex low-level machinery which makes systems difficult to maintain and extend, and in some cases can even affect sequential execution performance. In this paper we propose a novel solution to the problem of trapped nondeterministic goals and garbage slots which is based on a single stack reordering operation and offers several advantages over previous proposals. While the implementation of this operation itself is not simple, in return it does not impose constraints on the scheduler. As a result, the scheduler and the rest of the run-time machinery can safely ignore the trapped goal and garbage slot problems and their implementation is greatly simplified. Also, standard sequential execution remains unaffected. In addition to describing the solution we report on an implementation and provide performance results. We also suggest other possible applications of the proposed approach beyond parallel execution

    CAT: The Copying Approach to Tabling

    No full text

    Hiëronymus van Stridon

    No full text
    Item does not contain fulltext2 p

    Candia after the Black Death and the Whores' Guild

    No full text
    corecore