2,804 research outputs found
Accurate and Efficient Expression Evaluation and Linear Algebra
We survey and unify recent results on the existence of accurate algorithms
for evaluating multivariate polynomials, and more generally for accurate
numerical linear algebra with structured matrices. By "accurate" we mean that
the computed answer has relative error less than 1, i.e., has some correct
leading digits. We also address efficiency, by which we mean algorithms that
run in polynomial time in the size of the input. Our results will depend
strongly on the model of arithmetic: Most of our results will use the so-called
Traditional Model (TM). We give a set of necessary and sufficient conditions to
decide whether a high accuracy algorithm exists in the TM, and describe
progress toward a decision procedure that will take any problem and provide
either a high accuracy algorithm or a proof that none exists. When no accurate
algorithm exists in the TM, it is natural to extend the set of available
accurate operations by a library of additional operations, such as , dot
products, or indeed any enumerable set which could then be used to build
further accurate algorithms. We show how our accurate algorithms and decision
procedure for finding them extend to this case. Finally, we address other
models of arithmetic, and the relationship between (im)possibility in the TM
and (in)efficient algorithms operating on numbers represented as bit strings.Comment: 49 pages, 6 figures, 1 tabl
The Double Sphere Camera Model
Vision-based motion estimation and 3D reconstruction, which have numerous
applications (e.g., autonomous driving, navigation systems for airborne devices
and augmented reality) are receiving significant research attention. To
increase the accuracy and robustness, several researchers have recently
demonstrated the benefit of using large field-of-view cameras for such
applications. In this paper, we provide an extensive review of existing models
for large field-of-view cameras. For each model we provide projection and
unprojection functions and the subspace of points that result in valid
projection. Then, we propose the Double Sphere camera model that well fits with
large field-of-view lenses, is computationally inexpensive and has a
closed-form inverse. We evaluate the model using a calibration dataset with
several different lenses and compare the models using the metrics that are
relevant for Visual Odometry, i.e., reprojection error, as well as computation
time for projection and unprojection functions and their Jacobians. We also
provide qualitative results and discuss the performance of all models
RG flows of Quantum Einstein Gravity on maximally symmetric spaces
We use the Wetterich-equation to study the renormalization group flow of
-gravity in a three-dimensional, conformally reduced setting. Building on
the exact heat kernel for maximally symmetric spaces, we obtain a partial
differential equation which captures the scale-dependence of for
positive and, for the first time, negative scalar curvature. The effects of
different background topologies are studied in detail and it is shown that they
affect the gravitational RG flow in a way that is not visible in
finite-dimensional truncations. Thus, while featuring local background
independence, the functional renormalization group equation is sensitive to the
topological properties of the background. The detailed analytical and numerical
analysis of the partial differential equation reveals two globally well-defined
fixed functionals with at most a finite number of relevant deformations. Their
properties are remarkably similar to two of the fixed points identified within
the -truncation of full Quantum Einstein Gravity. As a byproduct, we
obtain a nice illustration of how the functional renormalization group realizes
the "integrating out" of fluctuation modes on the three-sphere.Comment: 35 pages, 6 figure
Toward accurate polynomial evaluation in rounded arithmetic
Given a multivariate real (or complex) polynomial and a domain ,
we would like to decide whether an algorithm exists to evaluate
accurately for all using rounded real (or complex) arithmetic.
Here ``accurately'' means with relative error less than 1, i.e., with some
correct leading digits. The answer depends on the model of rounded arithmetic:
We assume that for any arithmetic operator , for example or , its computed value is , where is bounded by some constant where , but
is otherwise arbitrary. This model is the traditional one used to
analyze the accuracy of floating point algorithms.Our ultimate goal is to
establish a decision procedure that, for any and , either exhibits
an accurate algorithm or proves that none exists. In contrast to the case where
numbers are stored and manipulated as finite bit strings (e.g., as floating
point numbers or rational numbers) we show that some polynomials are
impossible to evaluate accurately. The existence of an accurate algorithm will
depend not just on and , but on which arithmetic operators and
which constants are are available and whether branching is permitted. Toward
this goal, we present necessary conditions on for it to be accurately
evaluable on open real or complex domains . We also give sufficient
conditions, and describe progress toward a complete decision procedure. We do
present a complete decision procedure for homogeneous polynomials with
integer coefficients, {\cal D} = \C^n, and using only the arithmetic
operations , and .Comment: 54 pages, 6 figures; refereed version; to appear in Foundations of
Computational Mathematics: Santander 2005, Cambridge University Press, March
200
- …
