4 research outputs found

    Jasmonate-Dependent and -Independent Pathways Mediate Specific Effects of Solar Ultraviolet B Radiation on Leaf Phenolics and Antiherbivore Defense1[W][OA]

    Get PDF
    Ultraviolet B (UV-B) radiation, a very small fraction of the daylight spectrum, elicits changes in plant secondary metabolism that have large effects on plant-insect interactions. The signal transduction pathways that mediate these specific effects of solar UV-B are not known. We examined the role of jasmonate signaling by measuring responses to UV-B in wild-type and transgenic jasmonate-deficient Nicotiana attenuata plants in which a lipoxygenase gene (NaLOX3) was silenced (as-lox). In wild-type plants, UV-B failed to elicit the accumulation of jasmonic acid (JA) or the bioactive JA-isoleucine conjugate but amplified the response of jasmonate-inducible genes, such as trypsin proteinase inhibitor (TPI), to wounding and methyl jasmonate, and increased the accumulation of several phenylpropanoid derivatives. Some of these phenolic responses (accumulation of caffeoyl-polyamine conjugates) were completely lacking in as-lox plants, whereas others (accumulation of rutin and chlorogenic acid) were similar in both genotypes. In open field conditions, as-lox plants received more insect damage than wild-type plants, as expected, but the dramatic increase in resistance to herbivory elicited by UV-B exposure, which was highly significant in wild-type plants, did not occur in as-lox plants. We conclude that solar UV-B (1) uses jasmonate-dependent and -independent pathways in the elicitation of phenolic compounds, and (2) increases sensitivity to jasmonates, leading to enhanced expression of wound-response genes (TPI). The lack of UV-B-induced antiherbivore protection in as-lox plants suggests that jasmonate signaling plays a central role in the mechanisms by which solar UV-B increases resistance to insect herbivores in the field

    AtBBX29 integrates photomorphogenesis and defense responses in <i>Arabidopsis</i>

    No full text
    Light is an environmental signal that modulates plant defenses against attackers. Recent research has focused on the effects of light on defense hormone signaling; however, the connections between light signaling pathways and the biosynthesis of specialized metabolites involved in plant defense have been relatively unexplored. Here, we show that Arabidopsis BBX29, a protein that belongs to the B-Box transcription factor (TF) family, integrates photomorphogenic signaling with defense responses by promoting flavonoid, sinapate and glucosinolate accumulation in Arabidopsis leaves. AtBBX29 transcript levels were up regulated by light, through photoreceptor signaling pathways. Genetic evidence indicated that AtBBX29 up-regulates MYB12 gene expression, a TF known to induce genes related to flavonoid biosynthesis in a light-dependent manner, and MYB34 and MYB51, which encode TFs involved in the regulation of glucosinolate biosynthesis. Thus, bbx29 knockout mutants displayed low expression levels of key genes of the flavonoid biosynthetic pathway, and the opposite was true in BBX29 overexpression lines. In agreement with the transcriptomic data, bbx29 mutant plants accumulated lower levels of kaempferol glucosides, sinapoyl malate, indol-3-ylmethyl glucosinolate (I3M), 4-methylsulfinylbutyl glucosinolate (4MSOB) and 3-methylthiopropyl glucosinolate (3MSP) in rosette leaves compared to the wild-type, and showed increased susceptibility to the necrotrophic fungus Botrytis cinerea and to the herbivore Spodoptera frugiperda. In contrast, BBX29 overexpressing plants displayed increased resistance to both attackers. In addition, we found that AtBBX29 plays an important role in mediating the effects of ultraviolet-B (UV-B) radiation on plant defense against B. cinerea. Taken together, these results suggest that AtBBX29 orchestrates the accumulation of specific light-induced metabolites and regulates Arabidopsis resistance against pathogens and herbivores

    Low Red/Far-Red Ratios Reduce Arabidopsis Resistance to Botrytis cinerea and Jasmonate Responses via a COI1-JAZ10-Dependent, Salicylic Acid-Independent Mechanism1[C][W][OA]

    No full text
    Light is an important modulator of plant immune responses. Here, we show that inactivation of the photoreceptor phytochrome B (phyB) by a low red/far-red ratio (R:FR), which is a signal of competition in plant canopies, down-regulates the expression of defense markers induced by the necrotrophic fungus Botrytis cinerea, including the genes that encode the transcription factor ETHYLENE RESPONSE FACTOR1 (ERF1) and the plant defensin PLANT DEFENSIN1.2 (PDF1.2). This effect of low R:FR correlated with a reduced sensitivity to jasmonate (JA), thus resembling the antagonistic effects of salicylic acid (SA) on JA responses. Low R:FR failed to depress PDF1.2 mRNA levels in a transgenic line in which PDF1.2 transcription was up-regulated by constitutive expression of ERF1 in a coronatine insensitive1 (coi1) mutant background (35S::ERF1/coi1). These results suggest that the low R:FR effect, in contrast to the SA effect, requires a functional SCFCOI1-JASMONATE ZIM-DOMAIN (JAZ) JA receptor module. Furthermore, the effect of low R:FR depressing the JA response was conserved in mutants impaired in SA signaling (sid2-1 and npr1-1). Plant exposure to low R:FR ratios and the phyB mutation markedly increased plant susceptibility to B. cinerea; the effect of low R:FR was (1) independent of the activation of the shade-avoidance syndrome, (2) conserved in the sid2-1 and npr1-1 mutants, and (3) absent in two RNA interference lines disrupted for the expression of the JAZ10 gene. Collectively, our results suggest that low R:FR ratios depress Arabidopsis (Arabidopsis thaliana) immune responses against necrotrophic microorganisms via a SA-independent mechanism that requires the JAZ10 transcriptional repressor and that this effect may increase plant susceptibility to fungal infection in dense canopies

    Ontogenetic and trans鈥恎enerational dynamics of a vertically transmitted fungal symbiont in an annual host plant in ozone鈥恜olluted settings

    No full text
    Tropospheric ozone is an abiotic stress of increasing importance in the context of global climate change. This greenhouse gas is a potent phytotoxic molecule with demonstrated negative effects on crop yield and natural ecosystems. Recently, oxidative stress has been proposed as a mechanism that could regulate the interaction between cool-season grasses and Epichlo毛 endophytes. We hypothesized that exposure of Lolium multiflorum plants, hosting endophytes to an ozone-polluted environment at different ontogenetic phases, would impact the trans-generational dynamics of the vertically transmitted fungal symbiont. Here, we found that the ozone-induced stress on the mother plants did not affect the endophyte vertical transmission but it impaired the persistence of the fungus in the seed exposed to artificial ageing. Endophyte longevity in seed was reduced by exposure of the mother plant to ozone. Although ozone exposure did not influence either the endophyte mycelial concentration or their compound defences (loline alkaloids), a positive correlation was observed between host fitness and the concentration of endophyte-derived defence compounds. This suggests that fungal defences in grass seeds were not all produced in situ but remobilized from the vegetative tissues. Our study reveals ozone trans-generational effects on the persistence of a beneficial symbiont in a host grass.Fil: Ueno, Andrea Celeste. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Oficina de Coordinaci贸n Administrativa Parque Centenario. Instituto de Investigaciones Fisiol贸gicas y Ecol贸gicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronom铆a. Instituto de Investigaciones Fisiol贸gicas y Ecol贸gicas Vinculadas a la Agricultura; ArgentinaFil: Gundel, Pedro Emilio. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Oficina de Coordinaci贸n Administrativa Parque Centenario. Instituto de Investigaciones Fisiol贸gicas y Ecol贸gicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronom铆a. Instituto de Investigaciones Fisiol贸gicas y Ecol贸gicas Vinculadas a la Agricultura; ArgentinaFil: Ghersa, Claudio Marco. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Oficina de Coordinaci贸n Administrativa Parque Centenario. Instituto de Investigaciones Fisiol贸gicas y Ecol贸gicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronom铆a. Instituto de Investigaciones Fisiol贸gicas y Ecol贸gicas Vinculadas a la Agricultura; ArgentinaFil: Demkura, Patricia V茅r贸nica. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Oficina de Coordinaci贸n Administrativa Parque Centenario. Instituto de Investigaciones Fisiol贸gicas y Ecol贸gicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronom铆a. Instituto de Investigaciones Fisiol贸gicas y Ecol贸gicas Vinculadas a la Agricultura; ArgentinaFil: Card, Stuart D.. Agresearch Grasslands Research Centre; Nueva ZelandaFil: Mace, Wade J.. Agresearch Grasslands Research Centre; Nueva ZelandaFil: Martinez-Ghersa, Maria Alejandra. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Oficina de Coordinaci贸n Administrativa Parque Centenario. Instituto de Investigaciones Fisiol贸gicas y Ecol贸gicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronom铆a. Instituto de Investigaciones Fisiol贸gicas y Ecol贸gicas Vinculadas a la Agricultura; Argentin
    corecore