994 research outputs found

    Investigating the roughness effect of biofouling on propeller performance

    Get PDF
    As a result of the increasing pressure being placed on the marine industry to address ship emissions, regulations to govern the fuel efficiency and efficient operation of ships in the form of the Energy Efficiency Design Index (EEDI) (IMO, 2014) and Energy Efficiency Operation Index (EEOI) (IMO, 2009a) have recently come into force. These have been introduced alongside regulations concerning specific emissions requirements (UNFCCC). Attention has therefore been turned to all aspects of ship design and operation which have impact on their efficiency. In turn, this paper focuses on the effects of biofouling on propeller surfaces highlighting the benefits of reducing biofouling. This subject was the focus of a recently completed EU-Funded FP7 Project entitled FOUL-X-SPEL (2011). This paper investigates the detrimental impacts of biofouling on the performance of a real ship propeller using Computational Fluid Dynamics (CFD) simulations. Initially, the CFD approach used in this study was validated through CFD open-water tests of a propeller. A previously-developed CFD approach for approximating the surface roughness that results from biofouling has then been applied in order to predict the effects on propeller efficiency. The roughness effects of a typical coating and different fouling conditions on the propeller performance were therefore predicted for various advance coefficients Results indicated negative effects of biofouling on the propeller efficiency and the importance of the mitigation of such effects, supporting the importance of informing the industry about the impacts such that they are able to make informed decisions regarding regular propeller maintenance and cleanin

    Conserved mass models with stickiness and chipping

    Full text link
    We study a chipping model in one dimensional periodic lattice with continuous mass, where a fixed fraction of the mass is chipped off from a site and distributed randomly among the departure site and its neighbours; the remaining mass sticks to the site. In the asymmetric version, the chipped off mass is distributed among the site and the right neighbour, whereas in the symmetric version the redistribution occurs among the two neighbours. The steady state mass distribution of the model is obtained using a perturbation method for both parallel and random sequential updates. In most cases, this perturbation theory provides a steady state distribution with reasonable accuracy.Comment: 17 pages, 4 eps figure

    Volumetric and three-dimensional examination of sella turcica by cone-beam computed tomography: reference data for guidance to pathologic pituitary morphology

    Get PDF
    Background: The aim of the study was to assess the dimensions and volume of sella turcica in healthy Caucasian adults with normal occlusion and facial appearance from cone-beam computed tomography (CBCT) images. Materials and methods: CBCT images of 80 Caucasian adult patients (40 males, 40 females) with normal facial appearance and occlusion taken previously for diagnostic purposes were evaluated. Two groups were constructed in accordance to gender. The volume, length, diameter, and depth of the sella turcica were measured by Romexis software programme. Mann-Whitney U test and Independent t-tests were used for statistical analysis. Results: The mean lengths of the sella were 9.9 mm and 10.2 mm, depths were 9.2 mm and 8.8 mm and diameters were 12.3 mm and 12.1 mm in female and male groups, respectively. Between the genders, no statistically significant differences were found for any of the measurements. There were significantly higher values for the volume of sella turcica in males than in females (1102 ± 285.3 mm3 and 951.3 ± 278.5 mm3, respectively). Conclusions: The dimensions of sella turcica in healthy Caucasian adults with normal occlusion and facial appearance revealed nonsignificant differences between the genders. Individual variability in dimensions and gender differences in the volume are of importance in comparison of patients with craniofacial syndromes and aberrations. Knowledge concerning the dimensions and volume of sella turcica will be clinically relevant for a guidance to consciously realize pituitary disorders

    The role of the nature of the noise in the thermal conductance of mechanical systems

    Full text link
    Focussing on a paradigmatic small system consisting of two coupled damped oscillators, we survey the role of the L\'evy-It\^o nature of the noise in the thermal conductance. For white noises, we prove that the L\'evy-It\^o composition (Lebesgue measure) of the noise is irrelevant for the thermal conductance of a non-equilibrium linearly coupled chain, which signals the independence between mechanical and thermodynamical properties. On the other hand, for the non-linearly coupled case, the two types of properties mix and the explicit definition of the noise plays a central role.Comment: 9 pages, 2 figures. To be published in Physical Review

    HPC and CFD in the marine industry: past, present and future

    Get PDF
    This paper explores the use of Computational Fluid Dynamics (CFD) applications on High Performance Computing (HPC) platforms from the perspective of a user engaged in Naval Architecture research. The paper will consider the significant limitations which were imposed on research boundaries prior to present HPC capabilities, how this impacted development in the field and the implications for industry. One particular example is the costly experimental testing which, due to resource constraints, is generally restricted to model scale. It will then present an overview of the numerical simulation capabilities using current HPC performance and capability. With the increase of computational power and capacity, CFD simulations are proving to be more accurate and reliable. Being relatively cheaper and more time efficient, numerical methods are becoming the preferred choice within the industry compared to traditional experimental tests. Nevertheless, certain experimental procedures cannot be numerically replicated with the current levels of computational capacity. The future needs and challenges of research and development will be outlined and discussed, highlighting the significant impact exascale computing will have in the field

    Assessment of linear-scale indices for perimetry in terms of progression in early glaucoma

    Get PDF
    AbstractCurrently, global indices that summarize the visual field combine sensitivities on a logarithmic (decibel) scale. Recent structure–function models for glaucoma suggest that contrast sensitivity should be converted to a linear scale before averaging across visual field locations, to better relate sensitivity with the number of surviving retinal ganglion cells (RGCs). New indices designed to represent the number of RGCs already lost are described. At least one was found to be a significantly better predictor of subsequent rate of change than traditional Mean Deviation (p=0.014) in participants with glaucomatous optic neuropathy. Issues concerning the creation of optimal global indices are discussed

    Allelopathic potential of macrofungi on germinating maize (Zea mays L.) grain

    Get PDF
    The effect of methanol extracts of 10 macrofungi was evaluated on grain germination of maize (Zea mays L.). Germination percentage, radicle and plumule length and the level of carbohydrates and fatty acids were measured. Fungal metabolites inhibited germination up to 90.96%, plumule (97.77%) and radicle (92.83%) development. Plumule and radicle lengths were stimulated 35.26 and 10.60% in some assays, respectively. The fungal metabolites decreased the glucose (97.60%), sucrose (90.34%), fructose (96.85%), maltose (95.64%), oleic acid (97.50%) and linoleic acid (98.25%) levels, whereas increasing levels of the glucose (165.14%), sucrose (166.53%), fructose (83.18%), maltose (124.73%), oleic acid (6975.00%) and linoleic acid (5233.33%) were detected in some assays. It is concluded that macrofungi metabolites have commonly inhibitory effects on physiological and morphological processes of germinating maize grain except for considerable increases in the some parameters investigated

    Evolution of the mosaic structure in InGaN layer grown on a thick GaN template and sapphire substrate

    Get PDF
    Cataloged from PDF version of article.The InxGa1-xN epitaxial layers, with indium (x) concentration changes between 0.16 and 1.00 (InN), were grown on GaN template/(0001) Al2O3 substrate by metal organic chemical vapour deposition. The indium content (x), lattice parameters and strain values in the InGaN layers were calculated from the reciprocal lattice mapping around symmetric (0002) and asymmetric (10-15) reflection of the GaN and InGaN layers. The characteristics of mosaic structures, such as lateral and vertical coherence lengths, tilt and twist angle and heterogeneous strain and dislocation densities (edge and screw dislocations) of the InGaN epilayers and GaN template layers were investigated by using high-resolution X-ray diffraction (HR-XRD) measurements. With a combination of Williamson-Hall (W-H) measurements and the fitting of twist angles, it was found that the indium content in the InGaN epilayers did not strongly effect the mosaic structures' parameters, lateral and vertical coherence lengths, tilt and twist angle, or heterogeneous strain of the InGaN epilayers

    Experimental determination of the roughness functions of marine coatings

    Get PDF
    The aim of this paper is to determine the roughness functions of different marine coatings, including two novel FOUL-X-SPEL paints and two existing commercial coatings, and two control surfaces, using the overall method of Granville (1987). An extensive series of towing tests of flat plates coated with different antifouling coatings was carried out at the Kelvin Hydrodynamics Laboratory (KHL) of the University of Strathclyde. The tests were designed to examine the as applied drag performances of FOUL-X-SPEL paints and compare them with two existing reference paints and two control surfaces. The surface roughness amplitude parameters of all of the test surfaces were measured using a hull roughness analyser. In total over 150 runs were carried out, including a series of repeat tests designed to quantify the uncertainty in the results. The drag coefficients and roughness function values of each surface were evaluated along with the uncertainty limits

    An investigation of the effect of biomimetic tubercles on a flat plate

    Get PDF
    This paper describes the investigation, by means of Computational Fluid Dynamics (CFD), of the effect of biomimetic tubercles on the hydrodynamics of a fully submerged flat plate. The application of these tubercles takes inspiration from the features of the humpback whale (Megaptera Novaeangliae). These huge marine mammals are capable of quick and agile movements in the water, despite their bulky bodies. Researchers investigated the causes of this ability by studying some peculiar somatic characteristics of these animals, in particular the tubercles on the leading edge of their pectoral fins. These tubercles were applied in the form of sinusoidal perturbations of the leading edge of wing profiles and foils, and they proved to cause a positive effect on the overall performance. The aim of this paper is to investigate another type of tubercles, which appear in the shape of bumps on the whales head. The effect of these tubercles has not been studied yet, and this paper presents a study on the fundamental phenomena they generate in the water flowing on the surface of a flat plate. The tubercles are modelled as axisymmetric sinusoidal bumps placed on the flat plate. Different combinations of these tubercles are studied, in order to assess what the effect of a single tubercle is, and how more tubercles interact when they are placed closed to each other, in different configurations (number of tubercles and relative position). In addition, a systematic study of the effect of a single row of tubercles spanning perpendicularly to the flow is carried out. The tubercles change systematically in amplitude and position along the plate. One further objective of this paper is to investigate if an optimised application of the biomimetic tubercles can lead to a drag reduction for the flat plate. Preliminary simulations show that the rows of tubercles interact with the boundary layer by modifying the pressure distribution, velocity and direction of the flow. The tubercles appear to generate vortices that are similar to those created by sinusoidal tubercles on the leading edge of foils, which tend to thin the boundary layer. A change in the total drag of the plate with tubercle is also noticeable, which even decreases from the baseline (flat plate with no tubercles), at certain combinations of position and tubercle amplitude
    corecore