3 research outputs found

    Assessment of individual susceptibility to baseline DNA and cytogenetic damage in a healthy Turkish population: Evaluation with lifestyle factors

    No full text
    Background: Cytogenetic biomarkers are most frequently used well-established endpoints in human population studies with their sensitivity for measuring exposure to genotoxic agents. They have an important role as early predictors of cancer risk. Identification of individual genotypes of metabolic gene polymorphisms helps to understand the modulation of cancer susceptibility by environmental exposures, such as cigarette smoking and other lifestyle factors. Aim: To evaluate individual susceptibility to chemicals, we determined individual DNA damage related to glutathione S-transferase (GST) genotypes (GSTM1, GSTT1, and GSTP1) in a Turkish population. Methods: Peripheral blood lymphocytes (PBL) and DNA samples of 127 subjects were analyzed for the presence of DNA damage, using single-cell gel electrophoresis (the Comet assay), and for cytogenetic parameters (chromosomal aberrations [CAs], bleomycin-induced CA, and a cytokinesis-blocked micronucleus assay), and the polymerase chain reaction/restriction fragment length polymorphism method, respectively. Results: Individuals carrying a GSTT1-null allele showed higher frequencies of CA and micronucleus (MN) (p=0.026, p=0.003, respectively), whereas the GSTM1-null and GSTP1 mutant genotypes did not show any differences in cytogenetic parameters. Our findings demonstrated that none of the lifestyle factors (smoking, alcohol drinking, dietary habits, vitamin intake, and physical activity), except for vitamin intake (p=0.002), were significantly associated with the studied cytogenetic parameters. Conclusion: Our results suggest that the GSTT1 gene polymorphism may influence the baseline cytogenetic frequency in a healthy population

    The HUman MicroNucleus project on eXfoLiated buccal cells (HUMN XL): The role of life-style, host factors, occupational exposures, health status, and assay protocol

    No full text
    The human buccal micronucleus cytome assay (BMCyt) is one of the most widely used techniques to measure genetic damage in human population studies. Reducing protocol variability, assessing the role of confounders, and estimating a range of reference values are research priorities that will be addressed by the HUMN XL collaborative study. The HUMN XL project evaluates the impact of host factors, occupation, life-style, disease status, and protocol features on the occurrence of MN in exfoliated buccal cells. In addition, the study will provide a range of reference values for all cytome endpoints. A database of 5424 subjects with buccal MN values obtained from 30 laboratories worldwide was compiled and analyzed to investigate the influence of several conditions affecting MN frequency. Random effects models were mostly used to investigate MN predictors. The estimated spontaneous MN frequency was 0.74 (95% CI 0.52-1.05). Only staining among technical features influenced MN frequency, with an abnormal increase for non-DNA-specific stains. No effect of gender was evident, while the trend for age was highly significant (p<0.001). Most occupational exposures and a diagnosis of cancer significantly increased MN and other endpoints frequencies. MN frequency increased in heavy smoking (?40cig/day, FR=1.37; 95% CI 1.03-82) and decreased with daily fruit consumption (FR=0.68; 95% CI 0.50-0.91). The results of the HUMN XL project identified priorities for validation studies, increased the basic knowledge of the assay, and contributed to the creation of a laboratory network which in perspective may allow the evaluation of disease risk associated with MN frequency. © 2011 Elsevier B.V
    corecore