490 research outputs found

    Kinematics of W UMa-type binaries and evidences on the two types of formation

    Full text link
    The kinematics of 129 W UMa binaries is studied and its implications on the contact binary evolution is discussed. The sample is found to be heterogeneous in the velocity space that kinematically younger and older contact binaries exist in the sample. Kinematically young (0.5 Gyr) sub-sample (MG) is formed by selecting the systems which are satisfying the kinematical criteria of moving groups. After removing the possible MG members and the systems which are known to be members of open clusters, the rest of the sample is called Field Contact Binaries (FCB). The FCB has further divided into four groups according to The orbital period ranges. Then a correlation has been found in the sense that shorter period less massive systems have larger velocity dispersions than the longer period more massive systems. Dispersions in the velocity space indicates 5.47 Gyr kinematical age for the FCB group. Comparing with the field chromospherically active binaries (CAB), presumably detached binary progenitors of the contact systems, the FCB appears to be 1.61 Gyr older. Assuming an equilibrium in the formation and destruction of CAB and W UMa systems in the Galaxy, this age difference is treated as empirically deduced lifetime of the contact stage. Since the kinematical ages of the four sub groups of FCB are much longer than the 1.61 Gyr lifetime of the contact stage, the pre-contact stages of FCB must dominantly be producing the large dispersions. The kinematically young (0.5 Gyr) MG group covers the same total mass, period and spectral ranges as the FCB. But, the very young age of this group does not leave enough room for pre-contact stages, thus it is most likely that those systems were formed in the beginning of the main-sequence or during the pre-main-sequence contraction phase.Comment: 19 pages, including 11 figures and 5 tables, accepted for publication in MNRA

    Absolute Dimensions and Apsidal Motion of the Young Detached System LT Canis Majoris

    Get PDF
    New high resolution spectra of the short period (P~1.76 days) young detached binary LT CMa are reported for the first time. By combining the results from the analysis of new radial velocity curves and published light curves, we determine values for the masses, radii and temperatures as follows: M_1= 5.59 (0.20) M_o, R_1=3.56 (0.07) R_o and T_eff1= 17000 (500) K for the primary and M_2=3.36 (0.14) M_o, R_2= 2.04 (0.05) R_o and T_eff2= 13140 (800) K for the secondary. Static absorbtion features apart from those coming from the close binary components are detected in the several spectral regions. If these absorbtion features are from a third star, as the light curve solutions support, its radial velocity is measured to be RV_3=70(8) km s^-1. The orbit of the binary system is proved to be eccentric (e=0.059) and thus the apsidal motion exists. The estimated linear advance in longitude of periastron corresponds to an apsidal motion of U=694+/-5 yr for the system. The average internal structure constant log k_2,obs=-2.53 of LT CMa is found smaller than its theoretical value of log k_2,theo=-2.22 suggesting the stars would have more central concentration in mass. The photometric distance of LT CMa (d=535+/-45 pc) is found to be much smaller than the distance of CMa OB1 association (1150 pc) which rules out membership. A comparison with current stellar evolution models for solar metallicity indicates that LT CMa (35 Myr) is much older than the CMa OB1 association (3 Myr), confirming that LT CMa is not a member of CMa OB1. The kinematical and dynamical analysis indicate LT CMa is orbiting the Galaxy in a circular orbit and belongs to the young thin-disk population.Comment: 19 pages, 6 figures and 6 tables, accepted for publication in Publication of the Astronomical Society of Japa

    Study of Eclipsing Binary and Multiple Systems in OB Associations: I. Ori OB1a - IM Mon

    Full text link
    All available photometric and spectroscopic observations were collected and used as the basis of a detailed analysis of the close binary IM Mon. The orbital period of the binary was refined to 1.19024249(0.00000014) days. The Roche equipotentials, fractional luminosities (in (B, V) and H_p bands) and fractional radii for the component stars in addition to mass ratio q, inclination i of the orbit and the effective temperature T_eff of the secondary cooler less massive component were obtained by the analysis of light curves. IM Mon is classified to be a detached binary system in contrast to the contact configuration estimations in the literature. The absolute parameters of IM Mon were derived by the simultaneous solutions of light and radial velocity curves as M_1,2=5.50(0.24)M_o and 3.32(0.16)M_o, R1,2=3.15(0.04)R_o and 2.36(0.03)R_o, T_eff1,2=17500(350) K and 14500(550) K implying spectral types of B4 and B6.5 ZAMS stars for the primary and secondary components respectively. The modelling of the high resolution spectrum revealed the rotational velocities of the component stars as V_rot1=147(15) km/s and V_rot2=90(25) km/s. The photometric distance of 353(59) pc was found more precise and reliable than Hipparcos distance of 341(85) pc. An evolutionary age of 11.5(1.5) Myr was obtained for IM Mon. Kinematical and dynamical analysis support the membership of the young thin-disk population system IM Mon to the Ori OB1a association dynamically. Finally, we derived the distance, age and metallicity information of Ori OB1a sub-group using the information of IM Mon parameters.Comment: 26 pages, 5 figures and 6 tables, accepted for publication in Publication of the Astronomical Society of Japa

    The Catalogue of Stellar Parameters from the Detached Double-Lined Eclipsing Binaries in the Milky Way

    Full text link
    The most accurate stellar astrophysical parameters were collected from the solutions of the light and the radial velocity curves of 257 detached double-lined eclipsing binaries in the Milky Way. The catalogue contains masses, radii, surface gravities, effective temperatures, luminosities, projected rotational velocities of the component stars and the orbital parameters. The number of stars with accurate parameters increased 67 per cent in comparison to the most recent similar collection by Torres et al. (2010). Distributions of some basic parameters were investigated. The ranges of effective temperatures, masses and radii are 2750<Teff2750<T_{eff}(K)<43000<43000, 0.18<M/M<330.18<M/M_{\odot}<33 and 0.2<R/R<21.20.2<R/R_{\odot}<21.2, respectively. Being mostly located in one kpc in the Solar neighborhood, the present sample covers distances up to 4.6 kpc within the two local Galactic arms Carina-Sagittarius and Orion Spur. The number of stars with both mass and radius measurements better than 1 per cent uncertainty is 93, better than 3 per cent uncertainty is 311, and better than 5 per cent uncertainty is 388. It is estimated from the Roche lobe filling factors that 455 stars (88.5 per cent of the sample) are spherical within 1 per cent of uncertainty.Comment: 22 pages, including 14 figures and 5 tables, accepted for publication in PASA. Table 1 in the manuscript will be published electronicall

    Main-Sequence Effective Temperatures from a Revised Mass-Luminosity Relation Based on Accurate Properties

    Get PDF
    The mass-luminosity (M-L), mass-radius (M-R) and mass-effective temperature (MTeffM-T_{eff}) diagrams for a subset of galactic nearby main-sequence stars with masses and radii accurate to 3%\leq 3\% and luminosities accurate to 30%\leq 30\% (268 stars) has led to a putative discovery. Four distinct mass domains have been identified, which we have tentatively associated with low, intermediate, high, and very high mass main-sequence stars, but which nevertheless are clearly separated by three distinct break points at 1.05, 2.4, and 7MM_{\odot} within the mass range studied of 0.3832M0.38-32M_{\odot}. Further, a revised mass-luminosity relation (MLR) is found based on linear fits for each of the mass domains identified. The revised, mass-domain based MLRs, which are classical (LMαL \propto M^{\alpha}), are shown to be preferable to a single linear, quadratic or cubic equation representing as an alternative MLR. Stellar radius evolution within the main-sequence for stars with M>1MM>1M_{\odot} is clearly evident on the M-R diagram, but it is not the clear on the MTeffM-T_{eff} diagram based on published temperatures. Effective temperatures can be calculated directly using the well-known Stephan-Boltzmann law by employing the accurately known values of M and R with the newly defined MLRs. With the calculated temperatures, stellar temperature evolution within the main-sequence for stars with M>1MM>1M_{\odot} is clearly visible on the MTeffM-T_{eff} diagram. Our study asserts that it is now possible to compute the effective temperature of a main-sequence star with an accuracy of 6%\sim 6\%, as long as its observed radius error is adequately small (<1%) and its observed mass error is reasonably small (<6%).Comment: 57 pages, including 12 figures and 7 tables, accepted for publication in Astronomical Journa

    Dynamical evolution of active detached binaries on log Jo - log M diagram and contact binary formation

    Get PDF
    Orbital angular momentum (Jo), systemic mass (M) and orbital period (P) distributions of chromospherically active binaries (CAB) and W Ursae Majoris (W UMa) systems were investigated. The diagrams of log Jo - log P, log M - log P and log Jo-log M were formed from 119 CAB and 102 W UMa stars. The log Jo-log M diagram is found to be most meaningful in demonstrating dynamical evolution of binary star orbits. A slightly curved borderline (contact border) separating the detached and the contact systems was discovered on the log Jo - log M diagram. Since orbital size (a) and period (P) of binaries are determined by their current Jo, M and mass ratio q, the rates of orbital angular momentum loss (dlog Jo/dt) and mass loss (dlog M/dt) are primary parameters to determine the direction and the speed of the dynamical evolution. A detached system becomes a contact system if its own dynamical evolution enables it to pass the contact border on the log Jo - log M diagram. Evolution of q for a mass loosing detached system is unknown unless mass loss rate for each component is known. Assuming q is constant in the first approximation and using the mean decreasing rates of Jo and M from the kinematical ages of CAB stars, it has been predicted that 11, 23 and 39 cent of current CAB stars would transform to W UMa systems if their nuclear evolution permits them to live 2, 4 and 6 Gyrs respectively.Comment: 28 pages, including 6 figures and 2 tables, accepted for publication in MNRA

    The Spectroscopic Orbits of Three Double-lined Eclipsing Binaries: I. BG Ind, IM Mon, RS Sgr

    Full text link
    We present the spectroscopic orbit solutions of three double-lines eclipsing binaries, BG Ind, IM Mon and RS Sgr. The first precise radial velocities (RVs) of the components were determined using high resolution echelle spectra obtained at Mt. John University Observatory in New Zealand. The RVs of the components of BG Ind and RS Sgr were measured using Gaussian fittings to the selected spectral lines, whereas two-dimensional cross-correlation technique was preferred to determine the RVs of IM Mon since it has relatively short orbital period among the other targets and so blending of the lines is more effective. For all systems, the Keplerian orbital solution was used during the analysis and also circular orbit was adopted because the eccentricities for all targets were found to be negligible. The first precise orbit analysis of these systems gives the mass ratios of the systems as 0.894, 0.606 and 0.325, respectively for BG Ind, IM Mon and RS Sgr. Comparison of the mass ratio values, orbital sizes and minimum masses of the components of the systems indicates that all systems should have different physical, dynamical and probable evolutionary status.Comment: 17 pages, 6 figures and 4 tables, accepted for publication in New Astronom
    corecore