341 research outputs found

    Scattering of first and second sound waves by quantum vorticity in superfluid Helium

    Full text link
    We study the scattering of first and second sound waves by quantum vorticity in superfluid Helium using two-fluid hydrodynamics. The vorticity of the superfluid component and the sound interact because of the nonlinear character of these equations. Explicit expressions for the scattered pressure and temperature are worked out in a first Born approximation, and care is exercised in delimiting the range of validity of the assumptions needed for this approximation to hold. An incident second sound wave will partly convert into first sound, and an incident first sound wave will partly convert into second sound. General considerations show that most incident first sound converts into second sound, but not the other way around. These considerations are validated using a vortex dipole as an explicitely worked out example.Comment: 24 pages, Latex, to appear in Journal of Low Temperature Physic

    Binary Bose-Einstein Condensate Mixtures in Weakly and Strongly Segregated Phases

    Full text link
    We perform a mean-field study of the binary Bose-Einstein condensate mixtures as a function of the mutual repulsive interaction strength. In the phase segregated regime, we find that there are two distinct phases: the weakly segregated phase characterized by a `penetration depth' and the strongly segregated phase characterized by a healing length. In the weakly segregated phase the symmetry of the shape of each condensate will not take that of the trap because of the finite surface tension, but its total density profile still does. In the strongly segregated phase even the total density profile takes a different symmetry from that of the trap because of the mutual exclusion of the condensates. The lower critical condensate-atom number to observe the complete phase segregation is discussed. A comparison to recent experimental data suggests that the weakly segregated phase has been observed.Comment: minor change

    The Empirical Mass-Luminosity Relation for Low Mass Stars

    Full text link
    This work is devoted to improving empirical mass-luminosity relations and mass-metallicity-luminosity relation for low mass stars. For these stars, observational data in the mass-luminosity plane or the mass-metallicity-luminosity space subject to non-negligible errors in all coordinates with different dimensions. Thus a reasonable weight assigning scheme is needed for obtaining more reliable results. Such a scheme is developed, with which each data point can have its own due contribution. Previous studies have shown that there exists a plateau feature in the mass-luminosity relation. Taking into account the constraints from the observational luminosity function, we find by fitting the observational data using our weight assigning scheme that the plateau spans from 0.28 to 0.50 solar mass. Three-piecewise continuous improved mass-luminosity relations in K, J, H and V bands, respectively, are obtained. The visual mass-metallicity-luminosity relation is also improved based on our K band mass-luminosity relation and the available observational metallicity data.Comment: 8 pages, 2 figures. Accepted for publication in Astrophysics & Space Scienc

    Vortex vs spinning string: Iordanskii force and gravitational Aharonov-Bohm effect

    Full text link
    We discuss the transverse force acting on the spinning cosmic string, moving in the background matter. It comes from the gravitational Aharonov-Bohm effect and corresponds to the Iordanskii force acting on the vortex in superfluids, when the vortex moves with respect to the normal component of the liquid.Comment: Latex file, 9 pages, no figures, references are added, version submitted to JETP Let

    Dissipative dynamics of vortex lines in superfluid 4^{4}He

    Full text link
    We propose a Hamiltonian model that describes the interaction between a vortex line in superfluid 4^{4}He and the gas of elementary excitations. An equation of irreversible motion for the density operator of the vortex, regarded as a macroscopic quantum particle with a finite mass, is derived in the frame of Generalized Master Equations. This enables us to cast the effect of the coupling as a drag force with one reactive and one dissipative component, in agreement with the assumption of the phenomenological theories of vortex mutual friction in the two fluid model.Comment: 16 pages, no figures, to be published in PR

    Binary coalescence from case A evolution -- mergers and blue stragglers

    Full text link
    We constructed some main-sequence mergers from case A binary evolution and studied their characteristics via Eggleton's stellar evolution code. Both total mass and orbital angular momentum are conservative in our binary evolutions. Some mergers might be on the left of the ZAMS as defined by normal surface composition on a CMD because of enhanced surface helium content. The study also shows that central hydrogen content of the mergers is independent of mass. As a consequence, we fit the formula of magnitude and B-V of the mergers when they return back to thermal equilibrium with maximum error 0.29 and 0.037, respectively. Employing the consequences above, we performed Monte Carlo simulations to examine our models in NGC 2682 and NGC 2660. In NGC 2682, binary mergers from our models cover the region with high luminosity, but its importance is much less than that of AML. Our results are well-matched to the observations of NGC2660 if there is about 0.5Mo of mass loss in the merger process.Comment: 14 pages, 12 figures. accepted by MNRA

    Magnus and Iordanskii Forces in Superfluids

    Full text link
    The total transverse force acting on a quantized vortex in a superfluid is a problem that has eluded a complete understanding for more than three decades. In this letter I propose a remarkably simple argument, somewhat reminiscent of Laughlin's beautiful argument for the quantization of conductance in the quantum Hall effect, to define the superfluid velocity part of the transverse force. This term is found to be ρsκs×vs- \rho_s {\kappa}_s \times {v}_s. Although this result does not seem to be overly controversial, this thermodynamic argument based only on macroscopic properties of the superfluid does offer a robust derivation. A recent publication by Thouless, Ao and Niu has demonstrated that the vortex velocity part of the transverse force in a homogeneous neutral superfluid is given by the usual form ρsκs×vV\rho_s {\kappa}_s \times {v}_V. A combination of these two independent results and the required Galilean invariance yields that there cannot be any transverse force proportional to the normal fluid velocity, in apparent conflict with Iordanskii's theory of the transverse force due to phonon scattering by the vortex.Comment: RevTex, 1 Encapsulated Postscript figur

    Visual/infrared interferometry of Orion Trapezium stars: Preliminary dynamical orbit and aperture synthesis imaging of the Theta 1 Orionis C system

    Get PDF
    Located in the Orion Trapezium cluster, Theta 1 Orionis C is one of the youngest and nearest high-mass stars (O5-O7) and also known to be a close binary system. Using new multi-epoch visual and near-infrared bispectrum speckle interferometric observations obtained at the BTA 6 m telescope, and IOTA near-infrared long-baseline interferometry, we trace the orbital motion of the Theta 1 Ori C components over the interval 1997.8 to 2005.9, covering a significant arc of the orbit. Besides fitting the relative position and the flux ratio, we apply aperture synthesis techniques to our IOTA data to reconstruct a model-independent image of the Theta 1 Ori C binary system. The orbital solutions suggest a high eccentricity (e approx. 0.91) and short-period (P approx. 10.9 yrs) orbit. As the current astrometric data only allows rather weak constraints on the total dynamical mass, we present the two best-fit orbits. From these orbital solutions one can be favoured, implying a system mass of 48 M_sun and a distance to the Trapezium cluster of 434 pc. When also taking the measured flux ratio and the derived location in the HR-diagram into account, we find good agreement for all observables, assuming a spectral type of O5.5 for Theta 1 Ori C1 (M=34.0 M_sun) and O9.5 for C2 (M=15.5 M_sun). We find indications that the companion C2 is massive itself, which makes it likely that its contribution to the intense UV radiation field of the Trapezium cluster is non-negligible. Furthermore, the high eccentricity of the preliminary orbit solution predicts a very small physical separation during periastron passage (approx. 1.5 AU, next passage around 2007.5), suggesting strong wind-wind interaction between the two O stars.Comment: 13 pages, 9 figures, Accepted for publication in Astronomy & Astrophysic
    corecore