90 research outputs found

    Liverpool telescope 2: a new robotic facility for rapid transient follow-up

    Get PDF
    The Liverpool Telescope is one of the world's premier facilities for time domain astronomy. The time domain landscape is set to radically change in the coming decade, with surveys such as LSST providing huge numbers of transient detections on a nightly basis; transient detections across the electromagnetic spectrum from other facilities such as SVOM, SKA and CTA; and the era of `multi-messenger astronomy', wherein events are detected via non-electromagnetic means, such as gravitational wave emission. We describe here our plans for Liverpool Telescope 2: a new robotic telescope designed to capitalise on this new era of time domain astronomy. LT2 will be a 4-metre class facility co-located with the LT at the Observatorio del Roque de Los Muchachos on the Canary island of La Palma. The telescope will be designed for extremely rapid response: the aim is that the telescope will take data within 30 seconds of the receipt of a trigger from another facility. The motivation for this is twofold: firstly it will make it a world-leading facility for the study of fast fading transients and explosive phenomena discovered at early times. Secondly, it will enable large-scale programmes of low-to-intermediate resolution spectral classification of transients to be performed with great efficiency. In the target-rich environment of the LSST era, minimising acquisition overheads will be key to maximising the science gains from any follow-up programme. The telescope will have a diverse instrument suite which is simultaneously mounted for automatic changes, but it is envisaged that the primary instrument will be an intermediate resolution, optical/infrared spectrograph for scientific exploitation of transients discovered with the next generation of synoptic survey facilities. In this paper we outline the core science drivers for the telescope, and the requirements for the optical and mechanical design

    Novel role of cPLA2α in membrane and actin dynamics

    Get PDF
    Actin-directed processes such as membrane ruffling and cell migration are regulated by specific signal transduction pathways that become activated by growth factor receptors. The same signaling pathways that lead to modifications in actin dynamics also activate cPLA2α. Moreover, arachidonic acid, the product of cPLA2α activity, is involved in regulation of actin dynamics. Therefore, it was investigated whether cPLA2α plays a role in actin dynamics, more specifically during growth factor-induced membrane ruffling and cell migration. Upon stimulation of ruffling and cell migration by growth factors, endogenous cPLA2α and its active phosphorylated form were shown to relocate at protrusions of the cell membrane involved in actin and membrane dynamics. Inhibition of cPLA2α activity with specific inhibitors blocked growth factor-induced membrane and actin dynamics, suggesting an important role for cPLA2α in these processes

    Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex

    Get PDF
    The 5′-cap structure is a distinct feature of eukaryotic mRNAs, and eukaryotic viruses generally modify the 5′-end of viral RNAs to mimic cellular mRNA structure, which is important for RNA stability, protein translation and viral immune escape. SARS coronavirus (SARS-CoV) encodes two S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTase) which sequentially methylate the RNA cap at guanosine-N7 and ribose 2′-O positions, catalyzed by nsp14 N7-MTase and nsp16 2′-O-MTase, respectively. A unique feature for SARS-CoV is that nsp16 requires non-structural protein nsp10 as a stimulatory factor to execute its MTase activity. Here we report the biochemical characterization of SARS-CoV 2′-O-MTase and the crystal structure of nsp16/nsp10 complex bound with methyl donor SAM. We found that SARS-CoV nsp16 MTase methylated m7GpppA-RNA but not m7GpppG-RNA, which is in contrast with nsp14 MTase that functions in a sequence-independent manner. We demonstrated that nsp10 is required for nsp16 to bind both m7GpppA-RNA substrate and SAM cofactor. Structural analysis revealed that nsp16 possesses the canonical scaffold of MTase and associates with nsp10 at 1∶1 ratio. The structure of the nsp16/nsp10 interaction interface shows that nsp10 may stabilize the SAM-binding pocket and extend the substrate RNA-binding groove of nsp16, consistent with the findings in biochemical assays. These results suggest that nsp16/nsp10 interface may represent a better drug target than the viral MTase active site for developing highly specific anti-coronavirus drugs

    Synthesis and Self-Assembly of Well-Defined Block Copolypeptides via Controlled NCA Polymerization

    Full text link
    This article summarizes advances in the synthesis of well-defined polypeptides and block copolypeptides. Traditional methods used to polymerize α-amino acid-N-carboxyanhydrides (NCAs) are described, and limitations in the utility of these systems for the preparation of polypeptides are discussed. Improved initiators and methods that allow polypeptide synthesis with good control over chain length, chain length distribution, and chain-end functionality are also discussed. Using these methods, block and random copolypeptides of controlled dimensions (including molecular weight, sequence, composition, and molecular weight distribution) can now be prepared. The ability of well-defined block copolypeptides to assemble into supramolecular copolypeptide micelles, copolypeptide vesicles, and copolypeptide hydrogels is described. Many of these assemblies have been found to possess unique properties that are derived from the amino acid building blocks and ordered conformations of the polypeptide segments. © Springer-Verlag Berlin Heidelberg 2013

    Understanding Marine Mussel Adhesion

    Get PDF
    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion

    Long-term acclimation to elevated p

    No full text

    Noodle gels for cells

    No full text
    corecore