2 research outputs found

    Beta Cell Imaging—From Pre-Clinical Validation to First in Man Testing

    Get PDF
    There are presently no reliable ways to quantify human pancreatic beta cell mass (BCM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. Furthermore, the lack of beta cell imaging hampers the evaluation of the impact of new drugs aiming to prevent beta cell loss or to restore BCM in diabetes. We presently discuss the potential value of BCM determination as a cornerstone for individualized therapies in diabetes, describe the presently available probes for human BCM evaluation, and discuss our approach for the discovery of novel beta cell biomarkers, based on the determination of specific splice variants present in human beta cells. This has already led to the identification of DPP6 and FXYD2Îła as two promising targets for human BCM imaging, and is followed by a discussion of potential safety issues, the role for radiochemistry in the improvement of BCM imaging, and concludes with an overview of the different steps from pre-clinical validation to a first-in-man trial for novel tracers

    Pancreatic beta-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes

    Get PDF
    Transfer RNAs (tRNAs) are non-coding RNA molecules essential for protein synthesis. Post-transcriptionally they are heavily modified to improve their function, folding and stability. Intronic polymorphisms in CDKAL1, a tRNA methylthiotransferase, are associated with increased type 2 diabetes risk. Loss-of-function mutations in TRMT10A, a tRNA methyltransferase, are a monogenic cause of early onset diabetes and microcephaly. Here we confirm the role of TRMT10A as a guanosine 9 tRNA methyltransferase, and identify tRNA(Gln) and tRNA(iMeth) as two of its targets. Using RNA interference and induced pluripotent stem cell-derived pancreatic beta-like cells from healthy controls and TRMT10A-deficient patients we demonstrate that TRMT10A deficiency induces oxidative stress and triggers the intrinsic pathway of apoptosis in beta-cells. We show that tRNA guanosine 9 hypomethylation leads to tRNA(Gln) fragmentation and that 5'-tRNA(Gln) fragments mediate TRMT10A deficiency-induced beta-cell death. This study unmasks tRNA hypomethylation and fragmentation as a hitherto unknown mechanism of pancre-atic beta-cell demise relevant to monogenic and polygenic forms of diabetes.Peer reviewe
    corecore