8 research outputs found

    Nanocarrier-based drug combination therapy for glioblastoma.

    No full text
    The current achievements in treating glioblastoma (GBM) patients are not sufficient because many challenges exist, such as tumor heterogeneity, the blood brain barrier, glioma stem cells, drug efflux pumps and DNA damage repair mechanisms. Drug combination therapies have shown increasing benefits against those challenges. With the help of nanocarriers, enhancement of the efficacy and safety could be gained using synergistic combinations of different therapeutic agents. In this review, we will discuss the major issues for GBM treatment, the rationales of drug combinations with or without nanocarriers and the principle of enhanced permeability and retention effect involved in nanomedicine-based tumor targeting and promising nanodiagnostics or -therapeutics. We will also summarize the recent progress and discuss the clinical perspectives of nanocarrier-based combination therapies. The goal of this article was to provide better understanding and key considerations to develop new nanomedicine combinations and nanotheranostics options to fight against GBM

    Nanocarrier-based drug combination therapy for glioblastoma

    No full text
    The current achievements in treating glioblastoma (GBM) patients are not sufficient because many challenges exist, such as tumor heterogeneity, the blood brain barrier, glioma stem cells, drug efflux pumps and DNA damage repair mechanisms. Drug combination therapies have shown increasing benefits against those challenges. With the help of nanocarriers, enhancement of the efficacy and safety could be gained using synergistic combinations of different therapeutic agents. In this review, we will discuss the major issues for GBM treatment, the rationales of drug combinations with or without nanocarriers and the principle of enhanced permeability and retention effect involved in nanomedicine-based tumor targeting and promising nanodiagnostics or -therapeutics. We will also summarize the recent progress and discuss the clinical perspectives of nanocarrier-based combination therapies. The goal of this article was to provide better understanding and key considerations to develop new nanomedicine combinations and nanotheranostics options to fight against GBM

    Polymeric micelles loaded with carfilzomib increase tolerability in a humanized bone marrow-like scaffold mouse model

    Get PDF
    Carfilzomib-loaded polymeric micelles (CFZ-PM) based on poly(ethylene glycol)-b-poly(N-2-benzoyloxypropyl methacrylamide) (mPEG-b-p(HPMA-Bz)) were prepared with the aim to improve the maximum tolerated dose of carfilzomib in a "humanized" bone marrow-like scaffold model. For this, CFZ-PM were prepared and characterized for their size, carfilzomib loading and cytotoxicity towards multiple myeloma cells. Further, circulation and tumor & tissue distribution of fluorescently labeled micelles were determined. Tolerability of CFZ-PM versus the clinical approved formulation - Kyprolis® - was assessed. CFZ-PM presented small diameter below 55 nm and low PDI < 0.1. Cy7-labeled micelles circulated for extended periods of time with over 80% of injected dose in circulation at 24 h after intravenous injection and 1.3% of the injected dose of Cy7-labeled micelles accumulated in myeloma tumor-bearing scaffolds. Importantly, CFZ-PM were well tolerated whereas Kyprolis® showed adverse effects. Kyprolis® dosed at the maximum tolerated dose, as well as CFZ-PM, did not show therapeutic benefit, while multiple myeloma cells showed sensitivity in vitro, underlining the importance of the bone marrow crosstalk in testing novel formulations. Overall, this work indicates that PM are potential drug carriers of carfilzomib

    Polymeric micelles loaded with carfilzomib increase tolerability in a humanized bone marrow-like scaffold mouse model

    No full text
    Carfilzomib-loaded polymeric micelles (CFZ-PM) based on poly(ethylene glycol)-b-poly(N-2-benzoyloxypropyl methacrylamide) (mPEG-b-p(HPMA-Bz)) were prepared with the aim to improve the maximum tolerated dose of carfilzomib in a "humanized" bone marrow-like scaffold model. For this, CFZ-PM were prepared and characterized for their size, carfilzomib loading and cytotoxicity towards multiple myeloma cells. Further, circulation and tumor & tissue distribution of fluorescently labeled micelles were determined. Tolerability of CFZ-PM versus the clinical approved formulation - Kyprolis® - was assessed. CFZ-PM presented small diameter below 55 nm and low PDI < 0.1. Cy7-labeled micelles circulated for extended periods of time with over 80% of injected dose in circulation at 24 h after intravenous injection and 1.3% of the injected dose of Cy7-labeled micelles accumulated in myeloma tumor-bearing scaffolds. Importantly, CFZ-PM were well tolerated whereas Kyprolis® showed adverse effects. Kyprolis® dosed at the maximum tolerated dose, as well as CFZ-PM, did not show therapeutic benefit, while multiple myeloma cells showed sensitivity in vitro, underlining the importance of the bone marrow crosstalk in testing novel formulations. Overall, this work indicates that PM are potential drug carriers of carfilzomib

    Tumor Seeding During Colonoscopy as a Possible Cause for Metachronous Colorectal Cancer

    No full text
    Background and Aims: In patients who have undergone surgery for colorectal cancer (CRC), 3% have recurrence of (metachronous) CRC. We investigated whether tumor seeding during colonoscopy (iatrogenic implantation of tumor cells in damaged mucosa) increases risk for metachronous CRC. Methods: In a proof of principle study, we collected data from the Dutch National Pathology Registry for patients with a diagnosis of CRC from 2013 through 2015, with a second diagnosis of CRC within 6 months to 3.5 years after surgery. We reviewed pathology reports to identify likely metachronous CRC (histologically proven adenocarcinoma located elsewhere in the colon or rectum from the surgical anastomosis). For 22 patients fulfilling the inclusion criteria, we ascribed the most likely etiology to tumor seeding when endoscopic manipulations, such as biopsies or polypectomy, occurred at the location where the metachronous tumor was subsequently detected, after endoscopic manipulation of the primary tumor. We collected clinical data from patients and compared molecular profiles of the primary and metachronous colorectal tumors using next-generation sequencing. We then examined the source of seeded tumor. We tested whether tumor cells stay behind in the working channel of the endoscope after biopsies of colorectal tumors, and whether these cells maintain viability in organoid cultures. Results: In total, tumor seeding was suspected as the most likely etiology of metachronous CRC in 5 patients. Tumor tissues were available from 3 patients. An identical molecular signature was observed in the primary and metachronous colorectal tumors from all 3 patients. In 5 control cases with a different etiology of metachronous CRC, the molecular signature of the primary and metachronous tumor were completely different. Based on review of 2147 patient records, we estimated the risk of tumor seeding during colonoscopy to be 0.3%–0.6%. We demonstrated that the working channel of the colonoscope becomes contaminated with viable tumor cells during biopsy collection. Subsequent instruments introduced through this working channel also became contaminated. These cells were shown to maintain their proliferative potential. Conclusions: In an analysis of primary and secondary tumors from patients with metachronous CRC, we found that primary tumor cells might be seeded in a new location after biopsy of the primary tumor. Although our study does not eliminate other possibilities of transmission, our findings and experiments support the hypothesis that tumor seeding can occur during colonoscopy via the working channel of the endoscope. The possibility of iatrogenic seeding seems low. However, our findings compel awareness on this potentially preventable cause of metachronous CRC

    Oncologic photodynamic therapy: Basic principles, current clinical status and future directions

    Get PDF
    textabstractPhotodynamic therapy (PDT) is a clinically approved cancer therapy, based on a photochemical reaction between a light activatable molecule or photosensitizer, light, and molecular oxygen. When these three harmless components are present together, reactive oxygen species are formed. These can directly damage cells and/or vasculature, and induce inflammatory and immune responses. PDT is a two-stage procedure, which starts with photosensitizer administration followed by a locally directed light exposure, with the aim of confined tumor destruction. Since its regulatory approval, over 30 years ago, PDT has been the subject of numerous studies and has proven to be an effective form of cancer therapy. This review provides an overview of the clinical trials conducted over the last 10 years, illustrating how PDT is applied in the clinic today. Furthermore, examples from ongoing clinical trials and the most recent preclinical studies are presented, to show the directions, in which PDT is headed, in the near and distant future. Despite the clinical success reported, PDT is still currently underutilized in the clinic. We also discuss the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients
    corecore