763 research outputs found

    GPS constraints on deformation in northern Central America from 1999 to 2017, Part 1 – Time-dependent modelling of large regional earthquakes and their post-seismic effects

    Get PDF
    We use continuous and campaign measurements from 215 GPS sites in northern Central America and southern Mexico to estimate coseismic and afterslip solutions for the 2009 Mw = 7.3 Swan Islands fault strike-slip earthquake and the 2012 Mw = 7.3 El Salvador and Mw = 7.4 Guatemala thrust-faulting earthquakes on the Middle America trench. Our simultaneous, time-dependent inversion of more than 350 000 daily GPS site positions gives the first jointly consistent estimates of the coseismic slips for all three earthquakes, their combined time-dependent post-seismic effects and secular station velocities corrected for both the coseismic and post-seismic deformation. Our geodetic slip solutions for all three earthquakes agree with previous estimates that were derived via static coseismic-offset modelling. Our time-dependent model, which attributes all transient post-seismic deformation to earthquake afterslip, fits nearly all of the continuous GPS site position time-series within their severalmillimetre position noise. Afterslip moments for the three earthquakes range from 35 to 140 per cent of the geodetic coseismic moments, with the largest afterslip estimated for the 2012 El Salvador earthquake along the weakly coupled El Salvador trench segment. Forward modelling of viscoelastic deformation triggered by all three earthquakes for a range of assumed mantle and lower crustal viscosities suggests that it accounts for under 20 per cent of the observed post-seismic deformation and possibly under 10 per cent

    Anticipating the Successor to Mexico's Largest Historical Earthquake

    Get PDF
    Note in proof: On October 9, as this article was being prepared for publication, a magnitude 7.6 earthquake occurred beneath the Jalisco region and caused significant loss of life and property. This earthquake highlights the societal need for accurate measurements of crustal strain rates in earthquake-prone zones. In the coming months, we plan to measure the amount of displacement that occurred within the GPS network during and after this earthquake

    Forecasting the path of a laterally propagating dike

    Get PDF
    An important aspect of eruption forecasting is predicting the path of propagating dikes. We show how lateral dike propagation can be forecast using the minimum potential energy principle. We compare theory to observed propagation paths of dikes originating at the Bárðarbunga volcano, Iceland, in 2014 and 1996, by developing a probability distribution for the most likely propagation path. The observed propagation paths agree well with the model prediction. We find that topography is very important for the model, and our preferred forecasting model considers its influence on the potential energy change of the crust and magma. We tested the influence of topography by running the model assuming no topography and found that the path of the 2014 dike could not be hindcasted. The results suggest that lateral dike propagation is governed not only by deviatoric stresses but also by pressure gradients and gravitational potential energy. Furthermore, the model predicts the formation of curved dikes around cone-shaped structures without the assumption of a local deviatoric stress field. We suggest that a likely eruption site for a laterally propagating dike is in topographic lows. The method presented here is simple and computationally feasible. Our results indicate that this kind of a model can be applied to mitigate volcanic hazards in regions where the tectonic setting promotes formation of laterally propagating vertical intrusive sheets

    A statistical selection of on-plate sites based on a VLBI global solution

    Full text link

    Global solution of VLBI observations and assessments

    Full text link

    Slip kinematics and dynamics during and after the 1995 October 9 M_w=8.0 Colima–Jalisco earthquake, Mexico, from GPS geodetic constraints

    Get PDF
    We use horizontal and vertical crustal displacements derived from GPS measurements at 26 sites in western Mexico to study the coseismic and post-seismic kinematics and dynamics of the 1995 October 9 (M_w=8.0) Colima–Jalisco earthquake along the Middle America Trench. The measurements bracket the entire landward edge of the approximately 150 km long rupture zone and span a 4 yr period for most sites. We solve for the temporal evolution of slip along the subduction interface by inverting GPS displacements for the coseismic and four post-seismic intervals (March 1995–March 1999), subject to the assumption that the crust responds elastically to slip along a shallow-dipping, curved subduction interface. Coseismic rupture of up to 5 m was largely focused above depths of 20 km and was limited to a 120–140 km long segment of the subduction zone. Within one week of the earthquake, post-seismic slip migrated downdip to depths of 16–35 km, where it has since decayed logarithmically. We also find evidence for shallow aseismic slip during 1996 or early 1997 northwest of the coseismic rupture zone and increasingly widespread relocking of shallow regions of the subduction interface after early 1997. The relative lack of afterslip in shallow regions of the subduction interface suggests that the interface lies in the unstable frictional regime and hence is strongly coupled between earthquakes. By 1999, the cumulative slip moment associated with post-seismic slip equaled ∼70 per cent of the coseismic moment, with nearly all of this slip occurring downdip from the coseismic rupture zone. The migration of slip after the earthquake to a deeper and presumably velocity-strengthening area of the subduction interface and the logarithmic decay of afterslip conform to the qualitative and quantitative predictions of a model in which the fault kinematics are prescribed by rate- and state-variable frictional laws. However, misfits to the geodetic displacements exceed the average displacement uncertainties for all epochs, implying one or more of the following: (1) the elastic response is heterogeneous due to slip along unmodelled upper crustal faults or variations in the elastic properties of the crust; (2) other post-seismic mechanisms such as viscoelastic or poroelastic effects contribute to or possibly dominate the post-seismic response; (3) we have underestimated the uncertainties in the GPS displacements

    Constraining Absolute Plate Motions Since the Triassic

    Get PDF
    The absolute motion of tectonic plates since Pangea can be derived from observations of hotspot trails, paleomagnetism, or seismic tomography. However, fitting observations is typically carried out in isolation without consideration for the fit to unused data or whether the resulting plate motions are geodynamically plausible. Through the joint evaluation of global hotspot track observations (for times <80 Ma), first‐order estimates of net lithospheric rotation (NLR), and parameter estimation for paleo–trench migration (TM), we present a suite of geodynamically consistent, data‐optimized global absolute reference frames from 220 Ma to the present. Each absolute plate motion (APM) model was evaluated against six published APM models, together incorporating the full range of primary data constraints. Model performance for published and new models was quantified through a standard statistical analyses using three key diagnostic global metrics: root‐mean square plate velocities, NLR characteristics, and TM behavior. Additionally, models were assessed for consistency with published global paleomagnetic data and for ages <80 Ma for predicted relative hotspot motion, track geometry, and time dependence. Optimized APM models demonstrated significantly improved global fit with geological and geophysical observations while performing consistently with geodynamic constraints. Critically, APM models derived by limiting average rates of NLR to ~0.05°/Myr and absolute TM velocities to ~27‐mm/year fit geological observations including hotspot tracks. This suggests that this range of NLR and TM estimates may be appropriate for Earth over the last 220 Myr, providing a key step toward the practical integration of numerical geodynamics into plate tectonic reconstructions
    corecore