2 research outputs found

    Measurements of micrometeorological parameters for testing large scale models

    Get PDF
    This annual report discusses work accomplished on the FIFE (First International Satellite Land-Surface Climatology) Project. It contains manuscripts and reports during the past year of Grant NAG 5-389. Of its six chapters, three treat soil heat flux, and two deal with information about the FIFE sites. The first chapter on net radiation and the fourth chapter are to be presented at the Agricultural and Forest Meteorology Conference to be held in March 1989 in Charleston, South Carolina

    High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax

    Get PDF
    AbstractArundo donax has attracted interest as a potential bioenergy crop due to a high apparent productivity. It uses C3 photosynthesis yet appears competitive with C4 grass biomass feedstock’s and grows in warm conditions where C4 species might be expected to be that productive. Despite this there has been no systematic study of leaf photosynthetic properties. This study determines photosynthetic and photorespiratory parameters for leaves in a natural stand of A. donax growing in southern Portugal. We hypothesise that A. donax has a high photosynthetic potential in high and low light, stomatal limitation to be small and intrinsic water use efficiency unusually low. High photosynthetic rates in A. donax resulted from a high capacity for both maximum Rubisco (Vc,max 117 μmol CO2 m−2 s−1) and ribulose-1:5-bisphosphate limited carboxylation rate (Jmax 213 μmol CO2 m−2 s−1) under light-saturated conditions. Maximum quantum yield for light-limited CO2 assimilation was also high relative to other C3 species. Photorespiratory losses were similar to other C3 species under the conditions of measurement (25%), while stomatal limitation was high (0.25) resulting in a high intrinsic water use efficiency. Overall the photosynthetic capacity of A. donax is high compared to other C3 species and comparable to C4 bioenergy grasses.</jats:p
    corecore