18 research outputs found

    Genetic variability in local and imported germplasm chicken populations as revealed by analyzing runs of homozygosity

    Get PDF
    Simple Summary To maintain the uniqueness of conserved chicken populations of local and imported breeds is of great importance. In this study, we genotyped small populations belonging to 14 breeds and 7 crossbreds using an Illumina Chicken 60K SNP (Single Nucleotide Polymorphisms) BeadChip and looked for appropriate methods to characterize their purity/variability. It was not straightforward to identify crossbred individuals, and the best approach was based on calculating the length and number of homozygous regions, or runs of homozygosity (ROH), in the populations studied. The latter enabled most accurate identification of crossbreds and can be served as an effective tool in testing genome-wide purity of chicken breeds. Abstract Preserving breed uniqueness and purity is vitally important in developing conservation/breeding programs for a germplasm collection of rare and endangered chicken breeds. The present study was aimed at analyzing SNP genetic variability of 21 small local and imported purebred and F1 crossbred populations and identifying crossbreeding events via whole-genome evaluation of runs of homozygosity (ROH). The admixture models more efficiently reflected population structure, pinpointing crossbreeding events in the presence of ancestral populations but not in their absence. Multidimensional scaling and FST-based analyses did not discriminate properly between purebred populations and F1 crossbreds, especially when comparing related breeds. When applying the ROH-based approach, more and longer ROHs were revealed in purebred individuals/populations, suggesting this as an effective implement in genome-wide analysis of germplasm breed purity

    Genome-wide association studies targeting the yield of extraembryonic fluid and production traits in Russian White chickens

    Get PDF
    Background: The Russian White is a gene pool breed, registered in 1953 after crossing White Leghorns with local populations and, for 50 years, selected for cold tolerance and high egg production (EL). The breed has great potential in meeting demands of local food producers, commercial farmers and biotechnology sector of specific pathogen-free (SPF) eggs, the former valuing the breed for its egg weight (EW), EL, age at first egg (AFE), body weight (BW), and the latter for its yield of extraembryonic fluid (YEF) in 12.5-day embryos, ratio of extraembryonic fluid to egg weight, and embryo mass. Moreover, its cold tolerance has been presumably associated with day-old chick down colour (DOCDC) white rather than yellow, the genetic basis of these traits being however poorly understood. Results: We undertook genome-wide association studies (GWASs) for eight performance traits using single nucleotide polymorphism (SNP) genotyping of 146 birds and an Illumina 60KBeadChip. Several suggestive associations (p <5.16*10(-5)) were found for YEF, AFE, BW and EW. Moreover, on chromosome 2, an association with the white DOCDC was found where there is an linkage disequilibrium block of SNPs including genes that are responsible not for colour, but for immune resistance. Conclusions: The obtained GWAS data can be used to explore the genetics of immunity and carry out selection for increasing YEF for SPF eggs production.Peer reviewe

    Assessing the effects of rare alleles and linkage disequilibrium on estimates of genetic diversity in the chicken populations

    Get PDF
    Phenotypic diversity in poultry has been mainly driven by artificial selection and genetic drift. These led to the adaptation to the environment and the development of specific phenotypic traits of chickens in response to their economic use. This study evaluated genetic diversity within and between Russian breeds and populations using Illumina Chicken 60 K SNP iSelect BeadChip by analysing genetic differences between populations with Hudson's fixation index (FST statistic) and heterozygosity. We estimated the effect of rare alleles and linkage disequilibrium (LD) on these measurements. To assess the effect of LD on the genetic diversity population, we carried out the LD-based pruning (LD < 0.5 and LD < 0.1) for seven chicken populations combined (I) or separately (II). LD pruning was specific for different dataset groups. Because of the noticeably large sample size in the RussianWhite RG population, pruningwas substantial for Dataset I, and FST valueswere only positivewhen LD< 0.1 pruning was applied. For Dataset II, the LD pruning results were confirmed by examining heterozygosity and alleles' frequency distribution. LD between single nucleotide polymorphisms was consistent across the seven chicken populations, except the RussianWhite RG populationwith the smallest r2 values and the largest effective population size. Our findings suggest to study variability in each population LD pruning has to be carried separately not after merging to avoid bias in estimates

    Genetic variability of indels in the prolactin and dopamine receptor D2 genes and their association with the yield of allanto-amniotic fluid in Russian White laying hens

    Get PDF
    Currently, there is virtually no information on genetic factors affecting the yield of allanto amniotic fluid, which is the raw material for the production of human and animal vaccines. Association studies including this trait are beneficial for increasing productivity of a biotechnological line of chickens used for the production of ‘Clean Eggs’. We examined here a population of the Russian White breed for the effects of indels in the prolactin (PRL) and dopamine receptor D2 (DRD2) genes on the yield of extraembryonic fluid (YEF) and embryo weight at 12.5 days of development. A 24-bp insertion in the 5' flanking region of the PRL gene significantly (P<0.01) increases YEF in the embryos. The heterozygous embryos contained the highest YEF (9.6 mL) than that of the homozygous insertion (9.4 mL) and deletion embryos (8.4 mL). We also found a significant association (P<0.001) between the PRL genotypes and egg weight (EW). The results of the present study suggest a significant association between the PRL gene variation and quantitative traits in the Russian White chickens, contributing to a long-term programme on the effective use of the genetic potential of Russian gene pool breeds and populations of chickens

    Risk of sperm disorders and impaired fertility in frozen–thawed bull semen: a genome-wide association study

    Get PDF
    Simple Summary This study tackles the genetic aspects of the risk of sperm damage and related impaired fertility when handling frozen–thawed bull semen for artificial insemination. To this end, we performed genomic association analysis to identify relevant genetic markers and candidate genes associated with various abnormalities in frozen–thawed Holstein cattle sperm. The results provide important insights into the molecular mechanisms underlying sperm morphology and abnormalities after cryopreservation. Further research is needed to explore causative genetic variants and implement these findings to improve animal reproduction and breeding. Abstract Cryopreservation is a widely used method of semen conservation in animal breeding programs. This process, however, can have a detrimental effect on sperm quality, especially in terms of its morphology. The resultant sperm disorders raise the risk of reduced sperm fertilizing ability, which poses a serious threat to the long-term efficacy of livestock reproduction and breeding. Understanding the genetic factors underlying these effects is critical for maintaining sperm quality during cryopreservation, and for animal fertility in general. In this regard, we performed a genome-wide association study to identify genomic regions associated with various cryopreservation sperm abnormalities in Holstein cattle, using single nucleotide polymorphism (SNP) markers via a high-density genotyping assay. Our analysis revealed a significant association of specific SNPs and candidate genes with absence of acrosomes, damaged cell necks and tails, as well as wrinkled acrosomes and decreased motility of cryopreserved sperm. As a result, we identified candidate genes such as POU6F2, LPCAT4, DPYD, SLC39A12 and CACNB2, as well as microRNAs (bta-mir-137 and bta-mir-2420) that may play a critical role in sperm morphology and disorders. These findings provide crucial information on the molecular mechanisms underlying acrosome integrity, motility, head abnormalities and damaged cell necks and tails of sperm after cryopreservation. Further studies with larger sample sizes, genome-wide coverage and functional validation are needed to explore causal variants in more detail, thereby elucidating the mechanisms mediating these effects. Overall, our results contribute to the understanding of genetic architecture in cryopreserved semen quality and disorders in bulls, laying the foundation for improved animal reproduction and breeding

    Comparative analysis of molecular RFLP and SNP markers in assessing and understanding the genetic diversity of various chicken breeds

    Get PDF
    Monitoring the genetic diversity of small populations is important with respect to conserving rare and valuable chicken breeds, as well as discovery and innovation in germplasm research and application. Restriction fragment length polymorphisms (RFLPs), the molecular markers that underlie multilocus DNA fingerprinting (MLDF), have historically been employed for this purpose, but over the past two decades, there has been an irreversible shift toward high-throughput single-nucleotide polymorphisms (SNPs). In this study, we conducted a comparative analysis of archived MLDF results and new data from whole-genome SNP genotyping (SNPg) among 18 divergently selected breeds representing a large sample of the world gene pool. As a result, we obtained data that fit the general concept of the phylogenetic distribution of the studied breeds and compared them with RFLP and SNP markers. RFLPs were found to be useful markers for retrospective assessment of changes in the genetic architecture and variability underlying the phenotypic variation in chicken populations, especially when samples from previous generations used for MLDF are unavailable for SNPg. These results can facilitate further research necessary to assess the possibility of extrapolating previous MLDF results to study the long-term dynamics of genetic diversity in various small chicken germplasm populations over time. In general, the whole-genome characterization of populations and breeds by multiple SNP loci will further form the basis for the development and implementation of genomic selection with the aim of effective use of the genetic potential of the domestic gene pool in the poultry industry

    Disentangling clustering configuration intricacies for divergently selected chicken breeds

    Get PDF
    Divergently selected chicken breeds are of great interest not only from an economic point of view, but also in terms of sustaining diversity of the global poultry gene pool. In this regard, it is essential to evaluate the classification (clustering) of varied chicken breeds using methods and models based on phenotypic and genotypic breed differences. It is also important to implement new mathematical indicators and approaches. Accordingly, we set the objectives to test and improve clustering algorithms and models to discriminate between various chicken breeds. A representative portion of the global chicken gene pool including 39 different breeds was examined in terms of an integral performance index, i.e., specific egg mass yield relative to body weight of females. The generated dataset was evaluated within the traditional, phenotypic and genotypic classification/clustering models using the k-means method, inflection points clustering, and admixture analysis. The latter embraced SNP genotype datasets including a specific one focused on the performance-associated NCAPG-LCORL locus. The k-means and inflection points analyses showed certain discrepancies between the tested models/submodels and flaws in the produced cluster configurations. On the other hand, 11 core breeds were identified that were shared between the examined models and demonstrated more adequate clustering and admixture patterns. These findings will lay the foundation for future research to improve methods for clustering as well as genome- and phenomewide association/mediation analyses

    Selection-driven chicken phenome and phenomenon of pectoral angle variation across different chicken phenotypes

    Get PDF
    An appreciation of the synergy between genome and phenome of poultry breed is essential for a complete understanding of their biology. Phenotypic traits are shaped under the influence of artificial, production-oriented, selection that often acts contrary to that which would occur during natural selection. In this comparative study, we analysed the phenotypic diversity of 39 chicken breeds and populations that make up a significant part of the world gene pool. Grouping patterns of breeds found within the traditional, phenotypic models of their classification/clustering required in-depth analysis using sophisticated mathematical approaches. As a result of studying performance and conformation phenotypes, a phenomenon of previously underestimated variability in pectoral angle (PA) was revealed. Moreover, patterns of PA relationship with productive traits were analysed. We propose using PA measurement as a promising new auxiliary index for selecting hens and roosters of breeding flocks in egg production improvement programs

    Genome-wide association study for frozen-thawed sperm motility in stallions across various horse breeds

    Get PDF
    Objective: The semen quality of stallions including sperm motility is an important target of selection as it has a high level of individual variability. However, effects of the molecular architecture of the genome on the mechanisms of sperm formation and their preservation after thawing have been poorly investigated. Here, we conducted a genome-wide association study (GWAS) for the sperm motility of cryopreserved semen in stallions of various breeds. Methods: Semen samples were collected from the stallions of 23 horse breeds. The following semen characteristics were examined: progressive motility (PM), progressive motility after freezing (FPM), and the difference between PM and FPM. The respective DNA samples from these stallions were genotyped using Axiomâ„¢ Equine Genotyping Array. Results: We performed a GWAS search for single nucleotide polymorphism (SNP) markers and potential genes related to motility properties of frozen-thawed semen in the stallions of various breeds. As a result of the GWAS analysis, two SNP markers, rs1141327473 and rs1149048772, were identified that were associated with preservation of the frozen-thawed stallion sperm motility, the relevant putative candidate genes being NME8, OR2AP1 and OR6C4. Potential implications of effects of these genes on sperm motility are herein discussed. Conclusion: The GWAS results enabled us to localize novel SNPs and candidate genes for sperm motility in stallions. Implications of the study for horse breeding and genetics are a better understanding of genomic regions and candidate genes underlying stallion sperm quality, and improvement in horse reproduction and breeding techniques. The identified markers and genes for sperm cryotolerance and the respective genomic regions are promising candidates for further studying the biological processes in the formation and function of the stallion reproductive system

    Evolutionary subdivision of domestic chickens: implications for local breeds as assessed by phenotype and genotype in comparison to commercial and fancy breeds

    Get PDF
    To adjust breeding programs for local, commercial, and fancy breeds, and to implement molecular (marker-assisted) breeding, a proper comprehension of phenotypic and genotypic variation is a sine qua non for breeding progress in animal production. Here, we investigated an evolutionary subdivision of domestic chickens based on their phenotypic and genotypic variability using a wide sample of 49 different breeds/populations. These represent a significant proportion of the global chicken gene pool and all major purposes of breed use (according to their traditional classification model), with many of them being characterized by a synthetic genetic structure and notable admixture. We assessed their phenotypic variability in terms of body weight, body measurements, and egg production. From this, we proposed a phenotypic clustering model (PCM) including six evolutionary lineages of breed formation: egg-type, meat-type, dual purpose (egg-meat and meat-egg), game, fancy, and Bantam. Estimation of genotypic variability was carried out using the analysis of five SNPs, i.e., at the level of genomic variation at the NCAPG-LCORL locus. Based on these data, two generally similar genotypic clustering models (GCM1 and GCM2) were inferred that also had several overlaps with PCM. Further research for SNPs associated with economically important traits can be instrumental in marker-assisted breeding programs
    corecore