167 research outputs found

    Kajian Populasi Kepiting Kenari Di Pulau Batudaka Kepulauan Togean, Sulawesi Tengah Dan Rekomendasi Manajemen Populasi

    Get PDF
    This study aimed to quantify the population of Birgus latro in the Batudaka di Togean islands, Central Sulawesi. The research on robber crab was conducted in Batudaka Island, Togean, Tomini Bay, Central Sulawesi. In the study site, 21 plots measuring of 50x50 m2 were created bounded by raffia. Feed in the form of shredded coconut is placed in each plot in the afternoon. At night was performed observations and catchs. In the "base camp" every crab crab carapace caught measured in carapace length and weight. During the study, 277 crabs were caught, consisted of 173 males (62.45%) and 104 (37.55%) females. Based on the formula calculation of Schiller (1992) population figures obtained 821 803 ± 195 030 crabs in Batudaka Island. By regression analysis between carapace length with weight, it was found that the growth of B. latro is negative allometric, i.e., weight gain is faster than the increase length of carapace. The weight gain of female is slightly higher than that of the male. Whether male crab population or female equally composed of 9 age groups. This study showed that 66.7% of male crab and 29.1% of female crab has entered the market size

    Continuous and Segmented Flow Microfluidics: Applications in High-throughput Chemistry and Biology

    Get PDF
    This account highlights some of our recent activities focused on developing microfluidic technologies for application in high-throughput and high-information content chemical and biological analysis. Specifically, we discuss the use of continuous and segmented flow microfluidics for artificial membrane formation, the analysis of single cells and organisms, nanomaterial synthesis and DNA amplification via the polymerase chain reaction. In addition, we report on recent developments in small-volume detection technology that allow access to the vast amounts of chemical and biological information afforded by microfluidic systems

    Building droplet-based microfluidic systems for biological analysis

    Get PDF
    Abstract In the present paper, we review and discuss current developments and challenges in the field of dropletbased microfluidics. This discussion includes an assessment of the basic fluid dynamics of segmented flows, material requirements, fundamental unit operations and how integration of functional components can be applied to specific biological problems

    Hybrid Microfluidic Device for High Throughput Isolation of Cells Using Aptamer Functionalized Diatom Frustules

    Get PDF
    Circulating tumor cells (CTCs), secreted from primary and metastatic malignancies, hold a wealth of essential diagnostic and prognostic data for multiple cancers. Significantly, the information contained within these cells may hold the key to understanding cancer metastasis, both individually and fundamentally. Accordingly, developing ways to identify, isolate and interrogate CTCs plays an essential role in modern cancer research. Unfortunately, CTCs are typically present in the blood in vanishingly low titers and mixed with other blood components, making their isolation and analysis extremely challenging. Herein, we report the design, fabrication and optimization of a microfluidic device capable of automatically isolating CTCs from whole blood. This is achieved in two steps, via the passive viscoelastic separation of CTCs and white blood cells (WBCs) from red blood cells (RBCs), and subsequent active magnetophoretic separation of CTCs from WBCs. We detail the specific geometries required to balance the elastic and inertial forces required for successful passive separation of RBCs, and the use of computational fluid dynamics (CFD) to optimize active magnetophoretic separation. We subsequently describe the use of magnetic biosilica frustules, extracted from Chaetoceros sp. diatoms, to fluorescently tag CTCs and facilitate magnetic isolation. Finally, we use our microfluidic platform to separate HepG2-derived CTCs from whole blood, demonstrating exceptional CTC recovery (94.6%) and purity (89.7%

    Fluorescence detection methods for microfluidic droplet platforms

    Get PDF
    The development of microfluidic platforms for performing chemistry and biology has in large part been driven by a range of potential benefits that accompany system miniaturisation. Advantages include the ability to efficiently process nano- to femoto- liter volumes of sample, facile integration of functional components, an intrinsic predisposition towards large-scale multiplexing, enhanced analytical throughput, improved control and reduced instrumental footprints.

    A fully unsupervised compartment-on-demand platform for precise nanoliter assays of time-dependent steady-state enzyme kinetics and inhibition.

    Get PDF
    The ability to miniaturize biochemical assays in water-in-oil emulsion droplets allows a massive scale-down of reaction volumes, so that high-throughput experimentation can be performed more economically and more efficiently. Generating such droplets in compartment-on-demand (COD) platforms is the basis for rapid, automated screening of chemical and biological libraries with minimal volume consumption. Herein, we describe the implementation of such a COD platform to perform high precision nanoliter assays. The coupling of a COD platform to a droplet absorbance detection set-up results in a fully automated analytical system. Michaelis-Menten parameters of 4-nitrophenyl glucopyranoside hydrolysis by sweet almond β-glucosidase can be generated based on 24 time-courses taken at different substrate concentrations with a total volume consumption of only 1.4 μL. Importantly, kinetic parameters can be derived in a fully unsupervised manner within 20 min: droplet production (5 min), initial reading of the droplet sequence (5 min), and droplet fusion to initiate the reaction and read-out over time (10 min). Similarly, the inhibition of the enzymatic reaction by conduritol B epoxide and 1-deoxynojirimycin was measured, and Ki values were determined. In both cases, the kinetic parameters obtained in droplets were identical within error to values obtained in titer plates, despite a >10(4)-fold volume reduction, from micro- to nanoliters

    Continuous isotropic-nematic transition in amyloid fibril suspensions driven by thermophoresis

    Get PDF
    The isotropic and nematic (I + N) coexistence for rod-like colloids is a signature of the first-order thermodynamics nature of this phase transition. However, in the case of amyloid fibrils, the biphasic region is too small to be experimentally detected, due to their extremely high aspect ratio. Herein, we study the thermophoretic behaviour of fluorescently labelled β-lactoglobulin amyloid fibrils by inducing a temperature gradient across a microfluidic channel. We discover that fibrils accumulate towards the hot side of the channel at the temperature range studied, thus presenting a negative Soret coefficient. By exploiting this thermophoretic behaviour, we show that it becomes possible to induce a continuous I-N transition with the I and N phases at the extremities of the channel, starting from an initially single N phase, by generating an appropriate concentration gradient along the width of the microchannel. Accordingly, we introduce a new methodology to control liquid crystal phase transitions in anisotropic colloidal suspensions. Because the induced order-order transitions are achieved under stationary conditions, this may have important implications in both applied colloidal science, such as in separation and fractionation of colloids, as well as in fundamental soft condensed matter, by widening the accessibility of target regions in the phase diagrams.ISSN:2045-232
    • …
    corecore