19 research outputs found

    The GRAVITY instrument software / High-level software

    Full text link
    GRAVITY is the four-beam, near- infrared, AO-assisted, fringe tracking, astrometric and imaging instrument for the Very Large Telescope Interferometer (VLTI). It is requiring the development of one of the most complex instrument software systems ever built for an ESO instrument. Apart from its many interfaces and interdependencies, one of the most challenging aspects is the overall performance and stability of this complex system. The three infrared detectors and the fast reflective memory network (RMN) recorder contribute a total data rate of up to 20 MiB/s accumulating to a maximum of 250 GiB of data per night. The detectors, the two instrument Local Control Units (LCUs) as well as the five LCUs running applications under TAC (Tools for Advanced Control) architecture, are interconnected with fast Ethernet, RMN fibers and dedicated fiber connections as well as signals for the time synchronization. Here we give a simplified overview of all subsystems of GRAVITY and their interfaces and discuss two examples of high-level applications during observations: the acquisition procedure and the gathering and merging of data to the final FITS file.Comment: 8 pages, 7 figures, published in Proc. SPIE 9146, Optical and Infrared Interferometry IV, 91462

    The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI

    Full text link
    The GRAVITY instrument has been revolutionary for near-infrared interferometry by pushing sensitivity and precision to previously unknown limits. With the upgrade of GRAVITY and the Very Large Telescope Interferometer (VLTI) in GRAVITY+, these limits will be pushed even further, with vastly improved sky coverage, as well as faint-science and high-contrast capabilities. This upgrade includes the implementation of wide-field off-axis fringe-tracking, new adaptive optics systems on all Unit Telescopes, and laser guide stars in an upgraded facility. GRAVITY+ will open up the sky to the measurement of black hole masses across cosmic time in hundreds of active galactic nuclei, use the faint stars in the Galactic centre to probe General Relativity, and enable the characterisation of dozens of young exoplanets to study their formation, bearing the promise of another scientific revolution to come at the VLTI.Comment: Published in the ESO Messenge

    The MICADO first-light imager for the ELT: first steps of the SCAO system MAIT

    No full text
    International audienceMICADO is the ELT first light instrument, an imager working at the diffraction limit of the telescope thanks to two adaptive optics (AO) modes: a single conjugate one (SCAO), available at the instrument first light and developed by the MICADO consortium, and a multi conjugate one (MCAO), developed by the MORFEO consortium. Although the project final design review process is about to be completed, the review board and ESO acknowledged that "the review of the final design can be considered complete for the majority of the MICADO sub-systems" and agreed that MICADO can start manufacturing. For the MICADO SCAO module, we have started the manufacturing of several parts: the majority of the SCAO optics and of the SCAO mechanics, the real-time computer software and the instrument control software. This manufacturing is ordered in several steps to allow the progressive integration of a first full AO close loop with the final SCAO parts. In this contribution, we will focus on the first two steps: on our AO SĂ©same bench and the so-called "β flat configuration". We will present the status of this manufacturing and the first results obtained

    The MICADO first-light imager for the ELT: first steps of the SCAO system MAIT

    No full text
    International audienceMICADO is the ELT first light instrument, an imager working at the diffraction limit of the telescope thanks to two adaptive optics (AO) modes: a single conjugate one (SCAO), available at the instrument first light and developed by the MICADO consortium, and a multi conjugate one (MCAO), developed by the MORFEO consortium. Although the project final design review process is about to be completed, the review board and ESO acknowledged that "the review of the final design can be considered complete for the majority of the MICADO sub-systems" and agreed that MICADO can start manufacturing. For the MICADO SCAO module, we have started the manufacturing of several parts: the majority of the SCAO optics and of the SCAO mechanics, the real-time computer software and the instrument control software. This manufacturing is ordered in several steps to allow the progressive integration of a first full AO close loop with the final SCAO parts. In this contribution, we will focus on the first two steps: on our AO SĂ©same bench and the so-called "β flat configuration". We will present the status of this manufacturing and the first results obtained

    The MICADO first light imager for the ELT: overview of the SCAO module at its final design

    No full text
    International audienceMICADO is the ELT first light instrument, an imager working at the diffraction limit of the telescope thanks to two adaptive optics (AO) modes: a single conjugate one (SCAO), available at the instrument first light and developed by the MICADO consortium, and a multi conjugate one (MCAO), developed by the MORFEO consortium. This contribution presents an overview of the SCAO module while MICADO and its SCAO are in the last phase of their final design review. We focus on the SCAO architecture choices and present the final design of the SCAO subsystems: the Green Doughnut structure, the SCAO wavefront sensor, the SCAO calibration unit, the SCAO ICS (i.e. AOCS) and the SCAO RTC. We also present the SCAO global performance in terms of AO correction, obtained from an error budget that includes contributors estimated from AO end-to-end simulations as well as instrumental contributors. Finally, we present the current SCAO subsystems prototyping and the main milestones of the SCAO AIT plan
    corecore