7,523 research outputs found

    Using a Gridded Global Dataset to Characterize Regional Hydroclimate in Central Chile

    Get PDF
    Central Chile is facing dramatic projections of climate change, with a consensus for declining precipitation, negatively affecting hydropower generation and irrigated agriculture. Rising from sea level to 6000 m within a distance of 200 km, precipitation characterization is difficult because of a lack of long-term observations, especially at higher elevations. For understanding current mean and extreme conditions and recent hydroclimatological change, as well as to provide a baseline for downscaling climate model projections, a temporally and spatially complete dataset of daily meteorology is essential. The authors use a gridded global daily meteorological dataset at 0.25° resolution for the period 1948–2008, adjusted by monthly precipitation observations interpolated to the same grid using a cokriging method with elevation as a covariate. For validation, daily statistics of the adjusted gridded precipitation are compared to station observations. For further validation, a hydrology model is driven with the gridded 0.25° meteorology and streamflow statistics are compared with observed flow. The high elevation precipitation is validated by comparing the simulated snow extent to Moderate Resolution Imaging Spectroradiometer (MODIS) images. Results show that the daily meteorology with the adjusted precipitation can accurately capture the statistical properties of extreme events as well as the sequence of wet and dry events, with hydrological model results displaying reasonable agreement with observed streamflow and snow extent. This demonstrates the successful use of a global gridded data product in a relatively data-sparse region to capture hydroclimatological characteristics and extremes

    Unification via intermediate symmetry breaking scales with the quartification gauge group

    Full text link
    The idea of quark-lepton universality at high energies has been introduced as a natural extension to the standard model. This is achieved by endowing leptons with new degrees of freedom -- leptonic colour, an analogue of the familiar quark colour. Grand and partially unified models which utilise this new gauge symmetry SU(3)_\ell have been proposed in the context of the quartification gauge group SU(3)^4. Phenomenologically successful gauge coupling constant unification without supersymmetry has been demonstrated for cases where the symmetry breaking leaves a residual SU(2)_\ell unbroken. Though attractive, these schemes either incorporate ad hoc discrete symmetries and non-renormalisable mass terms, or achieve only partial unification. We show that grand unified models can be constructed where the quartification group can be broken fully [i.e. no residual SU(2)_\ell] to the standard model gauge group without requiring additional discrete symmetries or higher dimension operators. These models also automatically have suppressed nonzero neutrino masses. We perform a systematic analysis of the renormalisation-group equations for all possible symmetry breaking routes from SU(3)^4 --> SU(3)_q x SU(2)_L x U(1)_Y. This analysis indicates that gauge coupling unification can be achieved for several different symmetry breaking patterns and we outline the requirements that each gives on the unification scale. We also show that the unification scenarios of those models which leave a residual SU(2)_\ell symmetry are not unique. In both symmetry breaking cases, some of the scenarios require new physics at the TeV scale, while others do not allow for new TeV phenomenology in the fermionic sector.Comment: 25 page

    Ecological distribution conflicts as forces for sustainability

    Get PDF
    Can ecological distribution conflicts turn into forces for sustainability? This overview paper addresses in a systematic conceptual manner the question of why, through whom, how, and when conflicts over the use of the environment may take an active role in shaping transitions toward sustainability. It presents a conceptual framework that schematically maps out the linkages between (a) patterns of (unsustainable) social metabolism, (b) the emergence of ecological distribution conflicts, (c) the rise of environmental justice movements, and (d) their potential contributions for sustainability transitions. The ways how these four processes can influence each other are multi-faceted and often not a foretold story. Yet, ecological distribution conflicts can have an important role for sustainability, because they relentlessly bring to light conflicting values over the environment as well as unsustainable resource uses affecting people and the planet. Environmental justice movements, born out of such conflicts, become key actors in politicizing such unsustainable resource uses, but moreover, they take sometimes also radical actions to stop them. By drawing on creative forms of mobilizations and diverse repertoires of action to effectively reduce unsustainabilities, they can turn from ‘victims’ of environmental injustices into ‘warriors’ for sustainability. But when will improvements in sustainability be lasting? By looking at the overall dynamics between the four processes, we aim to foster a more systematic understanding of the dynamics and roles of ecological distribution conflicts within sustainability processes

    Pharmacological eEF2K activation promotes cell death and inhibits cancer progression.

    Get PDF
    Activation of the elongation factor 2 kinase (eEF2K) leads to the phosphorylation and inhibition of the elongation factor eEF2, reducing mRNA translation rates. Emerging evidence indicates that the regulation of factors involved in protein synthesis may be critical for controlling diverse biological processes including cancer progression. Here we show that inhibitors of the HIV aspartyl protease (HIV-PIs), nelfinavir in particular, trigger a robust activation of eEF2K leading to the phosphorylation of eEF2. Beyond its anti-viral effects, nelfinavir has antitumoral activity and promotes cell death. We show that nelfinavir-resistant cells specifically evade eEF2 inhibition. Decreased cell viability induced by nelfinavir is impaired in cells lacking eEF2K. Moreover, nelfinavir-mediated anti-tumoral activity is severely compromised in eEF2K-deficient engrafted tumors in vivo Our findings imply that exacerbated activation of eEF2K is detrimental for tumor survival and describe a mechanism explaining the anti-tumoral properties of HIV-PIs

    Impairment of both IRE1 expression and XBP1 activation is a hallmark of GCB DLBCL and contributes to tumor growth.

    Get PDF
    The endoplasmic reticulum kinase inositol-requiring enzyme 1 (IRE1) and its downstream target X-box-binding protein 1 (XBP1) drive B-cell differentiation toward plasma cells and have been shown to contribute to multiple myeloma development; yet, little is known of the role of this pathway in diffuse large B-cell lymphoma (DLBCL). Here, we show that in the germinal center B-cell-like (GCB) DLBCL subtype, IRE1 expression is reduced to a level that prevents XBP1 activation. Gene expression profiles indicated that, in GCB DLBCL cancer samples, expression of IRE1 messenger RNA was inversely correlated with the levels and activity of the epigenetic repressor, histone methyltransferase enhancer of zeste homolog 2 (EZH2). Correspondingly, in GCB-derived cell lines, the IRE1 promoter carried increased levels of the repressive epigenetic mark histone 3 lysine 27 trimethylation. Pharmacological inhibition of EZH2 erased those marks and restored IRE1 expression and function in vitro and in vivo. Moreover, reconstitution of the IRE1-signaling pathway, by expression of the XBP1-active form, compromised GCB DLBCL tumor growth in a mouse xenograft cancer model. These findings indicate that IRE1-XBP1 downregulation distinguishes GCB DLBCL from other DLBCL subtypes and contributes to tumor growth

    Evaluation of mesoscale convective systems in South America using multiple satellite products and an object‐based approach

    Get PDF
    In this study, an object-based verification method was used to reveal the existence of systematic errors in three satellite precipitation products: Tropical Rainfall Measurement Mission (TRMM), Climate Prediction Center Morphing Technique (CMORPH), and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN). Mesoscale convective systems (MCSs) for the austral summer 2002–2003 in the La Plata river basin, southeastern South America, were analyzed with the Contiguous Rain Area (CRA) method. Errors in storms intensity, volume, and spatial location were evaluated. A macroscale hydrological model was used to assess the impact of spatially shifted precipitation on streamflows simulations. PERSIANN underestimated the observed average rainfall rate and maximum rainfall consistent with the detection of storm areas systematically larger than observed. CMORPH overestimated the average rainfall rate while the maximum rainfall was slightly underestimated. TRMM average rainfall rate and rainfall volume correlated extremely well with ground observations whereas the maximum rainfall was systematically overestimated suggesting deficiencies in the bias correction procedure to filter noisy measurements. The preferential direction of error displacement in satellite-estimated MCSs was in the east-west direction for CMORPH and TRMM. Discrepancies in the fine structure of the storms dominated the error decomposition of all satellite products. Errors in the spatial location of the systems influenced the magnitude of simulated peaks but did not have a significant impact on the timing indicating that the system's response to precipitation was mitigating the effect of the errors.Fil: Demaria, E. M. C.. University Of Arizona; Estados UnidosFil: Rodriguez, D. A.. Centro de Previsao de Tempo e Estudos Climaticos. Instituto Nacional de Pesquisas Espaciais; BrasilFil: Ebert, E. E.. Centre for Australian Weather and Climate Research; AustraliaFil: Salio, Paola Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; ArgentinaFil: Su, F.. University of Washington; Estados UnidosFil: Valdes, J. B.. University Of Arizona; Estados Unido

    The Human Touch:Using a Webcam to Autonomously Monitor Compliance During Visual Field Assessments

    Get PDF
    Purpose: To explore the feasibility of using various easy-to-obtain biomarkers to monitor non-compliance (measurement error) during visual field assessments. Methods: Forty-two healthy adults (42 eyes) and seven glaucoma patients (14 eyes) underwent two same-day visual field assessments. An ordinary webcam was used to compute seven potential biomarkers of task compliance, based primarily on eye gaze, head pose, and facial expression. We quantified the association between each biomarker and measurement error, as defined by (1) test-retest differences in overall test scores (mean sensitivity), and (2) failures to respond to visible stimuli on individual trials (stimuli -3 dB or more brighter than threshold). Results: In healthy eyes, three of the seven biomarkers were significantly associated with overall (test-retest) measurement error (P = 0.003-0.007), and at least two others exhibited possible trends (P = 0.052-0.060). The weighted linear sum of all seven biomarkers was associated with overall measurement error, in both healthy eyes (r = 0.51, P <0.001) and patients (r = 0.65, P <0.001). Five biomarkers were each associated with failures to respond to visible stimuli on individual trials (all P <0.001). Conclusions: Inexpensive, autonomous measures of task compliance are associated with measurement error in visual field assessments, in terms of both the overall reliability of a test and failures to respond on particular trials ("lapses"). This could be helpful for identifying low-quality assessments and for improving assessment techniques (e.g., by discounting suspect responses or by automatically triggering comfort breaks or encouragement). Translational Relevance: This study explores a potential way of improving the reliability of visual field assessments, a crucial but notoriously unreliable clinical measure

    A one-dimensional lattice model for a quantum mechanical free particle

    Get PDF
    Two types of particles, A and B with their corresponding antiparticles, are defined in a one dimensional cyclic lattice with an odd number of sites. In each step of time evolution, each particle acts as a source for the polarization field of the other type of particle with nonlocal action but with an effect decreasing with the distance: A -->...\bar{B} B \bar{B} B \bar{B} ... ; B --> A \bar{A} A \bar{A} A ... . It is shown that the combined distribution of these particles obeys the time evolution of a free particle as given by quantum mechanics.Comment: 8 pages. Revte

    An Overview of the TROPICS NASA Earth Venture Mission

    Get PDF
    The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was selected by NASA as part of the Earth Venture-Instrument (EVI-3) program. The overarching goal for TROPICS is to provide nearly all-weather observations of 3D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones. TROPICS will provide rapid-refresh microwave measurements (median refresh rate better than 60 min for the baseline mission) which can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm life cycle. TROPICS comprises six Cube-Sats in three low-Earth orbital planes. Each CubeSat will host a high-performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz oxygen absorption line, water vapour profiles using three channels near the 183 GHz water vapour absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher-resolution water vapour channels), and a single channel near 205 GHz which is more sensitive to precipitation-sized ice particles. This observing system offers an unprecedented combination of horizontal and temporal resolution to measure environmental and inner-core conditions for tropical cyclones on a nearly global scale and is a major leap forward in the temporal resolution of several key parameters needed for assimilation into advanced data assimilation systems capable of utilizing rapid-update radiance or retrieval data.Launch readiness is currently projected for late 2019
    corecore