1,757 research outputs found

    Superfluidity in the interior-gap states

    Full text link
    We investigate superfluidity in the interior-gap states proposed by Liu and Wilczek. At weak coupling, we find the {\em gapless} interior-gap state unstable in physically accessible regimes of the parameter space, where the superfluid density is shown to be always negative. We therefore conclude that the spatially-uniform interior-gap phase is extremely unstable unless it is fully gapped; in this case, however, the state is rather similar to conventional BCS states.Comment: To appear in Physical Review

    Formation epochs, star formation histories and sizes of massive early-type galaxies in cluster and field environments at z=1.2: insights from the rest-frame UV

    Full text link
    We derive stellar masses, ages and star formation histories of massive early-type galaxies in the z=1.237 RDCS1252.9-2927 cluster and compare them with those measured in a similarly mass-selected sample of field contemporaries drawn from the GOODS South Field. Robust estimates of these parameters are obtained by comparing a large grid of composite stellar population models with 8-9 band photometry in the rest-frame NUV, optical and IR, thus sampling the entire relevant domain of emission of the different stellar populations. Additionally, we present new, deep UU-band photometry of both fields, giving access to the critical FUV rest-frame, in order to constrain empirically the dependence on the environment of the most recent star formation processes. We find that early-type galaxies, both in the cluster and in the field, show analogous optical morphologies, follow comparable mass vs. size relation, have congruent average surface stellar mass densities and lie on the same Kormendy relation. We also that a fraction of early-type galaxies in the field employ longer timescales, τ\tau, to assemble their mass than their cluster contemporaries. Hence we conclude that, while the formation epoch of early-type only depends on their mass, the environment does regulate the timescales of their star formation histories. Our deep UU-band imaging strongly supports this conclusions. It shows that cluster galaxies are at least 0.5 mag fainter than their field contemporaries of similar mass and optical-to-infrared colors, implying that the last episode of star formation must have happened more recently in the field than in the cluster.Comment: 20pages, 10 figures. to appear on Ap

    Chandra and XMM-Newton Observations of RDCS1252.9-2927, A Massive Cluster at z=1.24

    Get PDF
    We present deep Chandra and XMM obervations of the galaxy cluster RDCS1252.9-2927, which was selected from the ROSAT Deep Cluster Survey (RDCS) and confirmed by extensive spectroscopy with the VLT at redshift z=1.237. With the Chandra data, the X-ray emission from the intra-cluster medium is well resolved and traced out to 500 kpc, thus allowing a measurement of the physical properties of the gas with unprecedented accuracy at this redshift. We detect a clear 6.7 keV Iron K line in the Chandra spectrum providing a redshift within 1% of the spectroscopic one. By augmenting our spectroscopic analysis with the XMM data (MOS detectors only), we significantly narrow down the 1 sigma error bar to 10% for the temperature and 30% for the metallicity, with best fit values kT = 6.0(+0.7,-0.5) keV, Z = 0.36(+0.12,-0.10) Z_sun. In the likely hypothesis of hydrostatic equilibrium, we measure a total mass of M_{500} = (1.9+-0.3)10^14 h_70^{-1}M_sun within R_{Delta=500} = 536 kpc. Overall, these observations imply that RDCS1252.9-2927 is the most X-ray luminous and likely the most massive bona-fide cluster discovered to date at z>1. When combined with current samples of distant clusters, these data lend further support to a mild evolution of the cluster scaling relations, as well the metallicity of the intra-cluster gas. Inspection of the cluster mass function in the current cosmological concordance model (h,Omega_m,Omega_Lambda)=(0.7,0.3,0.7) and sigma_8=0.7-0.8 shows that RDCS1252.9-2927 is an M* cluster at z=1.24, in keeping with number density expectations in the RDCS survey volume.Comment: 9 pages, 1 color figure (fig6.jpg). The Astronomical Journal in press (Jan 2004). Full resolution preprint available at http://www.eso.org/~prosati/RDCS1252

    The Possible z=0.83 Precursors of z=0 M* Early-type Cluster Galaxies

    Full text link
    We examine the distribution of stellar masses of galaxies in MS 1054-03 and RX J0152.7-1357, two X-ray selected clusters of galaxies at z=0.83. Our stellar mass estimates, from spectral energy distribution fitting, reproduce the dynamical masses as measured from velocity dispersions and half-light radii with a scatter of 0.2 dex in the mass for early-type galaxies. When we restrict our sample of members to high stellar masses, > 1e11.1 Msun (M* in the Schechter mass function for cluster galaxies), we find that the fraction of early-type galaxies is 79 +/- 6% at z=0.83 and 87 +/- 6% at z=0.023 for the Coma cluster, consistent with no evolution. Previous work with luminosity-selected samples finds that the early-type fraction in rich clusters declines from =~80% at z=0 to =~60% at z=0.8. The observed evolution in the early-type fraction from luminosity-selected samples must predominately occur among sub-M* galaxies. As M* for field and group galaxies, especially late-types, is below M* for clusters galaxies, infall could explain most of the recent early-type fraction growth. Future surveys could determine the morphological distributions of lower mass systems which will confirm or refute this explanation.Comment: 5 pages in emulate ApJ format with three color figures. Accepted for publication in ApJ Letters, v642n2. Updated to correct grammatical and typographic errors found by the journa

    Resonant control of elastic collisions in an optically trapped Fermi gas of atoms

    Full text link
    We have loaded an ultracold gas of fermionic atoms into a far off resonance optical dipole trap and precisely controlled the spin composition of the trapped gas. We have measured a magnetic-field Feshbach resonance between atoms in the two lowest energy spin-states, |9/2, -9/2> and |9/2, -7/2>. The resonance peaks at a magnetic field of 201.5 plus or minus 1.4 G and has a width of 8.0 plus or minus 1.1 G. Using this resonance we have changed the elastic collision cross section in the gas by nearly 3 orders of magnitude.Comment: 4 pages, 3 figure

    Manipulating the critical temperature for the superfluid phase transition in trapped atomic Fermi gases

    Full text link
    We examine the effect of the trapping potential on the critical temperature, TCT_C, for the BCS transition to a superfluid state in trapped atomic gases of fermions. TCT_C for an arbitrary power law trap is calculated in the Thomas-Fermi approximation. For anharmonic traps, TCT_C can be increased by several orders of magnitude in comparison to a harmonic trap. Our theoretical results indicate that, in practice, one could manipulate the critical temperature for the BCS phase transition by shaping the traps confining the atomic Fermi gases.Comment: 4 page

    Mass-Selection and the Evolution of the Morphology-Density Relation from z=0.8 to z=0

    Get PDF
    We examined the morphology-density relations for galaxy samples selected by luminosity and by mass in each of five massive X-ray clusters from z=0.023 to 0.83 for 674 spectroscopically-confirmed members. Rest-frame optical colors and visual morphologies were obtained primarily from Hubble Space Telescope images. Morphology-density relations (MDR) are derived in each cluster from a complete, luminosity-selected sample of 452 galaxies with a magnitude limit M_V < M^{*}_{V} + 1. The change in the early-type fraction with redshift matches previous work for massive clusters of galaxies. We performed a similar analysis, deriving MDRs for complete, mass-selected samples of 441 galaxies with a mass-limit of 10^{10.6} M_{\sun}. Our mass limit includes faint objects, the equivalent of =~1 mag below L^{*} for the red cluster galaxies, and encompasses =~70% of the stellar mass in cluster galaxies. The MDRs in the mass-selected sample at densities of Sigma > 50 galaxies Mpc^{-2} are similar to those in the luminosity-selected sample but show larger early-type fractions. However, the trend with redshift in the fraction of elliptical and S0 galaxies with masses > 10^{10.6} M_{\sun} differs significantly between the mass- and luminosity-selected samples. The clear trend seen in the early-type fraction from z=0 to z=~ 0.8 is not found in mass-selected samples. The early-type galaxy fraction changes much less, and is consistent with being constant at 92% +/- 4% at \Sigma> 500 galaxies Mpc^{-2} and 83 +/- 3% at 50 < \Sigma < 500 galaxies Mpc^{-2}. This suggests that galaxies of mass lower than > 10^{10.6} M_{\sun} play a significant role in the evolution of the early-type fraction in luminosity-selected samples. (Abstract abridged)Comment: 18 pages in emulate ApJ format, with 10 color figures, Accepted to ApJ. Version updated to reflect published version, includes new references and a correction to table

    The Red Sequence of High-Redshift Clusters: a Comparison with Cosmological Galaxy Formation Models

    Full text link
    We compare the results from a semi-analytic model of galaxy formation with spectro-photometric observations of distant galaxy clusters observed in the range 0.8< z< 1.3. We investigate the properties of their red sequence (RS) galaxies and compare them with those of the field at the same redshift. In our model we find that i) a well-defined, narrow RS is obtained already by z= 1.2; this is found to be more populated than the field RS, analogously to what observed and predicted at z=0; ii) the predicted U-V rest-frame colors and scatter of the cluster RS at z=1.2 have average values of 1 and 0.15 respectively, with a cluster-to-cluster variance of 0.2 and 0.06, respectively. The scatter of the RS of cluster galaxies is around 5 times smaller than the corresponding field value; iii) when the RS galaxies are considered, the mass growth histories of field and cluster galaxies at z=1.2 are similar, with 90 % of the stellar mass of RS galaxies at z=1.2 already formed at cosmic times t=2.5 Gyr, and 50 % at t=1 Gyr; v) the predicted distribution of stellar ages of RS galaxies at z=1.2 peaks at 3.7 Gyr for both cluster and field populations; however, for the latter the distribution is significantly skewed toward lower ages. When compared with observations, the above findings show an overall consistency, although the average value 0.07 of the observed cluster RS scatter (U-V colors) at z=1.2 is smaller than the corresponding model central value. We discuss the physical origin and the significance of the above results in the framework of cosmological galaxy formation.Comment: 14 pages, accepted for publication in ApJ. Updated one referenc

    VLT and ACS observations of RDCS J1252.9-2927: dynamical structure and galaxy populations in a massive cluster at z=1.237

    Get PDF
    We present results from an extensive spectroscopic survey, carried out with VLT FORS, and from an extensive multiwavelength imaging data set from the HST Advanced Camera for Surveys and ground based facilities, of the cluster of galaxies RDCS J1252.9-2927. We have spectroscopically confirmed 38 cluster members in the redshift range 1.22 < z < 1.25. A cluster median redshift of z=1.237 and a rest-frame velocity dispersion of 747^{+74}_{-84} km/s are obtained. Using the 38 confirmed redshifts, we were able to resolve, for the first time at z > 1, kinematic structure. The velocity distribution, which is not Gaussian at the 95% confidence level, is consistent with two groups that are also responsible for the projected east-west elongation of the cluster. The groups are composed of 26 and 12 galaxies with velocity dispersions of 486^{+47}_{-85} km/s and 426^{+57}_{-105} km/s, respectively. The elongation is also seen in the intracluster gas and the dark matter distribution. This leads us to conclude that RDCS J1252.9-2927 has not yet reached a final virial state. We extend the analysis of the color-magnitude diagram of spectroscopic members to more than 1 Mpc from the cluster center. The scatter and slope of non-[OII]-emitting cluster members in the near-IR red sequence is similar to that seen in clusters at lower redshift. Furthermore, most of the galaxies with luminosities greater than ~ K_s*+1.5 do not show any [OII], indicating that these more luminous, redder galaxies have stopped forming stars earlier than the fainter, bluer galaxies. Our observations provide detailed dynamical and spectrophotometric information on galaxies in this exceptional high-redshift cluster, delivering an in-depth view of structure formation at this epoch only 5 Gyr after the Big Bang.Comment: 29 pages. 16 figures. ApJ accepted. Tables 2,3 and 5, figure 1 and the full figure 5 will be available in the paper and electronic editions from ApJ. v2: minor corrections to the abstract and text to match the Journal's versio

    Observation of p-wave Threshold Law Using Evaporatively Cooled Fermionic Atoms

    Full text link
    We have measured independently both s-wave and p-wave cross-dimensional thermalization rates for ultracold potassium-40 atoms held in a magnetic trap. These measurements reveal that this fermionic isotope has a large positive s-wave triplet scattering length in addition to a low temperature p-wave shape resonance. We have observed directly the p-wave threshold law which, combined with the Fermi statistics, dramatically suppresses elastic collision rates at low temperatures. In addition, we present initial evaporative cooling results that make possible these collision measurements and are a precursor to achieving quantum degeneracy in this neutral, low-density Fermi system.Comment: 5 pages, 3 figures, 1 tabl
    • 

    corecore