200 research outputs found

    Structurally-controlled hydrothermal alteration in the syntectonic Neoproterozoic Upper Ruvubu Alkaline Plutonic Complex (Burundi): Implications for REE and HFSE mobilities

    Get PDF
    International audienceThe Neoproterozoic Upper Ruvubu Alkaline Plutonic Complex (URAPC), Burundi, is located along the western branch of the East African Rift. It comprises oversaturated and undersaturated syenites and a shallow level carbonatite body (the Matongo carbonatite) that does not outcrop but has been sampled by drill-cores. The elliptic map contour of the URAPC points to a syntectonic emplacement. Large shear zones that were active during magmatic emplacement have accommodated a regional NE-SW shortening. Mineralization features of late-magmatic to hydrothermal origin are associated with the carbonatite, which, by itself, contains a dense network of calcitic veins. HFSE mineralization occurring as zircon and ilmenite megacrysts can be found in an area of intense and extensive K-fenitization, which lead to the transformation of the surrounding syenite into a dominant K-feldspar + biotite mineral assemblage (Inamvumvu area). Carbonatitic dykes (overprinted by a hydrothermal alteration) are present a few kilometers north of the Matongo carbonatite, within highly deformed zones in the syenite. These dykes occur along with Na-fenites (resulting from the transformation of the feldspathoidal syenite into an albite-dominant paragenesis) and are enriched in REE-minerals (monazite and ancylite-(Ce)). Many magmatic (pegmatoid) dykes and hydrothermal (quartz + hematite) veins also occur in shear zones in the URAPC. Most of them can be interpreted as tension gashes. The chondrite-normalized REE patterns of some carbonatite whole rock samples are highly disturbed, in relation to post-magmatic hydrothermal alteration. The HFSE and REE distribution in the minerals from the hydrothermal veins/dykes (calcitic veins within the carbonatite, carbonatite dykes overprinted by a hydrothermal alteration in deformed zones, and zircon and ilmenite megacrysts) attests for a complex behaviour of REE during alteration. Oxygen and carbon isotope compositions of the Matongo carbonatite and the carbonatitic dykes have a magmatic signature, with 7.2 < δ18O (vs. SMOW) < 8.5‰ and -4.7 < δ13C (vs. PDB) < -5.4‰ in agreement with the Sr isotopic composition. The oxygen isotope composition of zircon and ilmenite megacrysts (δ18OZr = 4 to 4.7‰, δ18OIlm = -4.3 to -1.5‰ respectively) also point to a magmato-hydrothermal origin of the forming fluids. Some samples of the Matongo carbonatite and the carbonatitic dykes, with high δ18O values (δ18O = 8.6 to 21.8‰), show evidence of a medium- to low-temperature hydrothermal alteration event by an aqueous fluid. Calcitic veins in the carbonatite record another alteration event, outlined by the co-variation of δ18O and δ13C values (δ18O = 16.3 to 24.7‰ and δ13C = -4.7 to 0.2‰), implying the involvement of a mixed H2O-CO2 fluid. As a whole, the circulation of fluids in the URAPC was initiated during magmatic emplacement and the geometry of this circulation was controlled by the syn-emplacement crustal scale shear zones. Element mobility, one expression of which being the mineralization features described here, follow the same scheme

    Upper Cretaceous intrusives in the Coastal Cordillera near Valdivia: forearc magmatism related to the passage of a triple junction?

    Get PDF
    Upper Cretaceous intrusives of limited extent crop out in the Coastal Cordillera near of Valdivia (39º48' S), 100 km west of the main topographic divide of the Andean Cordillera. Given that plutonic rocks of the same age crop out at the same latitudes in the high Andes the coastal intrusives emplaced in a forearc position in the upper plate of a subduction setting. They correspond to hypabyssal intrusives displaying mainly porphyritic texture and lithological variations with microtonalites (minor), porphyritic microgranodiorites (main) and microgranites. They intrude the Upper Paleozoic-Triassic accretionary complex of the Bahia Mansa Metamorphic Complex. These intrusives, that comprise the Chaihuín Pluton and minor stocks of porphyritic felsic rocks, have calc-alkaline affinities with metaluminous and peraluminous character. They are geochemically similar to the contemporaneous main arc-related plutonic rocks of the Gualletué Plutonic Group. The microgranitoids and dacitic rocks from Los Boldos, the low and Loncoche are peculiar because they show an apparently adakitic affinity in Sr/Y and LaN/YbN discriminant diagrams; nevertheless Sr contents of these rocks (<<400 ppm) preclude a true adakitic character. The petrogenesis of the Chaihuín Pluton, is consistent with an evolution from tonalite to granite by successive fractional crystallization of plagioclase, amphibole, biotite, Fe-Ti oxides, apatite and zircon. The initial 87Sr/86Sr ratio (0.70411-0.70745), ?Nd (+4.24 to -3.09) and present-day Pb isotopic ratios (206Pb/204Pb: 18.616 to 18.708; 207Pb/204Pb: 15.620 to 15.635; 208Pb/204Pb: 38.573 to 38.662) of these rocks indicate that depleted mantle derived-magmas were contaminated by assimilation of crustal material at the base of the paleo accretionary prism or by subduction erosion. The heat required to explain mantle melting beneath the forearc crust could be supplied by the subduction of a young and hot oceanic slab and/or an active spreading ridge, as attested in similar settings in the world. According to plate reconstruction models the studied forearc intrusives would be generated during the migration of a triple junction that passed near Valdivia between 100 and 70 Ma.pp.24-5

    Etude pétrologique de l'apophyse sud-est du massif de Bjerkrem-Sogndal (Norvège méridionale)

    No full text
    info:eu-repo/semantics/publishe

    Les kimberlites d'Afrique Centrale: pétrologie, géochimie et intérêt économique

    No full text
    info:eu-repo/semantics/publishe

    De l'origine des anorthosites: pétrologie, géochimie et géochimie isotopique des massifs anorthositiques d'Hidra et de Garsaknatt ( Rogaland - Norvège mériodionale)

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    La tectonique des plaques: Une révolution dans les sciences de la terre

    No full text
    info:eu-repo/semantics/publishe
    corecore