50 research outputs found

    Recent results and new hardware developments for protein crystal growth in microactivity

    Get PDF
    Protein crystal growth experiments have been performed on 16 space shuttle missions since April, 1985. The initial experiments utilized vapor diffusion crystallization techniques similar to those used in laboratories for earth-based experiments. More recent experiments have utilized temperature induced crystallization as an alternative method for growing high quality protein crystals in microgravity. Results from both vapor diffusion and temperature induced crystallization experiments indicate that proteins grown in microgravity may be larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth

    Protein crystal growth results from the United States Microgravity Laboratory-1 mission

    Get PDF
    Protein crystal growth experiments have been performed by this laboratory on 18 Space Shuttle missions since April, 1985. In addition, a number of microgravity experiments also have been performed and reported by other investigators. These Space Shuttle missions have been used to grow crystals of a variety of proteins using vapor diffusion, liquid diffusion, and temperature-induced crystallization techniques. The United States Microgravity Laboratory - 1 mission (USML-1, June 25 - July 9, 1992) was a Spacelab mission dedicated to experiments involved in materials processing. New protein crystal growth hardware was developed to allow in orbit examination of initial crystal growth results, the knowledge from which was used on subsequent days to prepare new crystal growth experiments. In addition, new seeding hardware and techniques were tested as well as techniques that would prepare crystals for analysis by x-ray diffraction, a capability projected for the planned Space Station. Hardware that was specifically developed for the USML-1 mission will be discussed along with the experimental results from this mission

    Pilot testing the feasibility of a game intervention aimed at improving help seeking and coping among sexual and gender minority youth: protocol for a randomized controlled trial

    Get PDF
    Background: Sexual and gender minority youth (SGMY; e.g., lesbian, gay, bisexual, and transgender youth) experience myriad substance use and mental health disparities compared with their cisgender (non-transgender) heterosexual peers. Despite much research showing these disparities are driven by experiences of bullying and cyberbullying victimization, few interventions have aimed to improve the health of bullied SGMY. One possible way to improve the health of bullied SGMY is via an online-accessible game intervention. Nevertheless, little research has examined the feasibility of using an online-accessible game intervention with SGMY. Objectives: To describe the protocol for a randomized controlled trial (RCT) pilot testing the feasibility and limited-efficacy of a game-based intervention for increasing help-seeking-related knowledge, intentions, self-efficacy, and behaviors, productive coping skills use, and coping flexibility, and reducing health risk factors and behaviors among SGMY. Methods: We enrolled 240 SGMY aged 14-18 years residing in the United States into a two-arm prospective RCT. The intervention is a theory-based, community-informed, computer-based, role playing game with three primary components: (1) encouraging help-seeking behaviors; (2) encouraging use of productive coping; and (3) raising awareness of online resources. SGMY randomized to both the intervention and control conditions will receive a list of SGMY-inclusive resources covering a variety of health-related topics. Control condition participants received only the list of resources. Notably, all study procedures are conducted online. We conveniently sampled SGMY using online website advertisements. Study assessments occur at enrollment, 1 month after enrollment, and 2 months after enrollment. The primary outcomes of this feasibility study include implementation procedures, game demand, and game acceptability. Secondary outcomes include help-seeking intentions, self-efficacy, and behaviors; productive coping strategies and coping flexibility; and knowledge and use of online resources. Tertiary outcomes include bullying and cyberbullying victimization; loneliness; mental health issues; substance use; and internalized sexual and gender minority stigma. Results: From April through July 2018, 240 participants were enrolled and randomized. Half of the enrolled participants (n=120) were randomized into the intervention condition, and half (n=120) into the control condition. At baseline, 52% of participants identified as gay or lesbian, 27% as bisexual, 24% as queer, and 12% as another non-heterosexual identity. Nearly half (47%) of participants were a gender minority, 37% were cisgender boys, and 16% were cisgender girls. There were no differences in demographic characteristics between intervention and control condition participants. Data collection is anticipated to end in November 2018. Conclusions: Online-accessible game interventions overcome common impediments of face-to-face interventions and present a unique opportunity to reach SGMY and improve their health. This trial will provide data on feasibility and limited-efficacy that can inform future online studies and a larger RCT aimed at improving health equity for SGMY. Trial Registration: ClinicalTrials.gov NCT03501264; https://clinicaltrials.gov/ct2/show/NCT03501264 (Archived by WebCite at http://www.webcitation.org/72HpafarW

    Coverage of whole proteome by structural genomics observed through protein homology modeling database

    Get PDF
    We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE (http://daisy.nagahama-i-bio.ac.jp/Famsbase/), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics

    Effect of Microgravity on Mammalian Lymphocytes

    No full text
    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization.The Astronauts will be exposed to microgravity environment for a long duration of time during these flights.Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system.We did our preliminary investigations by exposing mammalian lymphocytes to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon Inc (USA).Our initial results showed no significant change in cytokine expression in these cells for a time period of forty eight hours exposure.Our future experiments will involve exposure for a longer period of time

    Le Bacille du charbon (de l'antiquité à nos jours)

    No full text
    NANCY1-SCD Pharmacie-Odontologie (543952101) / SudocSudocFranceF

    Replication of Chimeric Human Immunodeficiency Virus Type 1 (HIV-1) Containing HIV-2 Integrase (IN): Naturally Selected Mutations in IN Augment DNA Synthesis

    No full text
    The human immunodeficiency virus type 1 (HIV-1) integrase (IN) protein augments the initiation of reverse transcription. Chimeric HIV-1 containing HIV-2 IN (SG3(IN2)) is severely impaired in virus infectivity and DNA synthesis. To analyze the nature of this defect, we infected T cells with the chimeric SG3(IN2) virus and by continuous passage in cell culture selected for virus with improved replication properties. Viruses from two different time points were chosen for further analysis, an early culture-adapted virus (CF-65) that exhibited an intermediate level of infectivity, and a later-passaged virus (CF-131) that was significantly more infectious. Sequence analysis of multiple clones derived from the CF-65 virus culture demonstrated a diversity of mutations in the reverse transcriptase (RT) and a common V204I IN mutation. Analysis of clones derived from the CF-131 virus indicated the selection of two additional IN mutations, Q96H and K127E, and a fixed V179I RT mutation. By cloning RT and/or IN sequences back into the original SG3(IN2) chimeric virus, we demonstrated that mutations in both RT and IN contributed to the improvement in viral fitness. The effect of the HIV-2IN(IN(2)) mutations on virus DNA synthesis was analyzed by packaging IN(2) mutants into HIV-1 as Vpr-IN(2) fusion proteins. This analysis revealed that the Q96H, K127E and V204I mutations increased the infectivity of the chimeric virus by augmenting the initiation of viral cDNA synthesis in infected cells. The Q96H and K127E mutations are present in adjacent helical structures on the surface of the IN protein and together account for most of the increase observed in DNA synthesis. Our findings provide evidence that the IN protein augments the initiation of reverse transcription through specific interactions with other viral components comprising the initiation complex. Moreover, they implicate specific regions on the surface of IN that may help to elucidate mechanisms by which the HIV-1 IN protein augments the initiation of HIV-1 reverse transcription in vivo

    Structural basis of laminin binding to the LARGE glycans on dystroglycan

    Get PDF
    Dystroglycan is a highly glycosylated extracellular matrix receptor with essential functions in skeletal muscle and the nervous system. Reduced matrix binding by α-dystroglycan (α-DG) due to perturbed glycosylation is a pathological feature of several forms of muscular dystrophy. Like-acetylglucosaminyltransferase (LARGE) synthesizes the matrix-binding heteropolysaccharide [-glucuronic acid-β1,3-xylose- α1,3-]n. Using a dual exoglycosidase digestion, we confirm that this polysaccharide is present on native α-DG from skeletal muscle. The atomic details of matrix binding were revealed by a high-resolution crystal structure of laminin G-like (LG) domains 4-5 of laminin α2 bound to a LARGE-synthesized oligosaccharide. A single glucuronic acid- β1,3-xylose disaccharide repeat straddles a Ca2+ ion in the LG4 domain, with oxygen atoms from both sugars replacing Ca2+-bound water molecules. The chelating binding mode accounts for the high affinity of this protein-carbohydrate interaction. These results reveal a novel mechanism of carbohydrate recognition and provide a structural framework for elucidating the mechanisms underlying muscular dystrophy

    Protein production and crystallization at SECSG - An overview

    No full text
    Using a high degree of automation, the Southeast Collaboratory for Structural Genomics (SECSG) has developed high throughput pipelines for protein production, and crystallization using a two-tiered approach. Primary, or tier-1, protein production focuses on producing proteins for members of large Pfam families that lack a representative structure in the Protein Data Bank. Target genomes are Pyrococcus furiosus and Caenorhabditis elegans. Selected human proteins are also under study. Tier-2 protein production, or target rescue, focuses on those tier-1 proteins, which either fail to crystallize or give poorly diffracting crystals. This two tier approach is more efficient since it allows the primary protein production groups to focus on the production of new targets while the tier-2 efforts focus on providing additional sample for further studies and modified protein for structure determination. Both efforts feed the SECSG high throughput crystallization pipeline, which is capable of screening over 40 proteins per week. Details of the various pipelines in use by the SECSG for protein production and crystallization, as well as some examples of target rescue are described. © Springer 2005
    corecore