278 research outputs found

    Domain walls at the spin density wave endpoint of the organic superconductor (TMTSF)2PF6 under pressure

    Full text link
    We report the first comprehensive investigation of the organic superconductor (TMTSF)2PF6 in the vicinity of the endpoint of the spin density wave - metal phase transition where phase coexistence occurs. At low temperature, the transition of metallic domains towards superconductivity is used to reveal the various textures. In particular, we demonstrate experimentally the existence of 1D and 2D metallic domains with a cross-over from a filamentary superconductivity mostly along the c?-axis to a 2D superconductivity in the b?c-plane perpendicular to the most conducting direction. The formation of these domain walls may be related to the proposal of a soliton phase in the vicinity of the critical pressure of the (TMTSF)2PF6 phase diagram.Comment: 5 page

    Role of Phase Variables in Quarter-Filled Spin Density Wave States

    Full text link
    Several kinds of spin density wave (SDW) states with both quarter-filled band and dimerization are reexamined for a one-dimensional system with on-site, nearest-neighbor and next-nearest-neighbor repulsive interactions, which has been investigated by Kobayashi et al. (J. Phys. Soc. Jpn. 67 (1998) 1098). Within the mean-field theory, the ground state and the response to the density variation are calculated in terms of phase variables, θ\theta and ϕ\phi, where θ\theta expresses the charge fluctuation of SDW and ϕ\phi describes the relative motion between density wave with up spin and that with down spin respectively. It is shown that the exotic state of coexistence of 2k_F-SDW and 2k_F-charge density wave (CDW) is followed by 4k_F-SDW but not by 4k_F-CDW where k_F denotes a Fermi wave vector. The harmonic potential with respect to the variation of θ\theta and/or ϕ\phi disappears for the interactions, which lead to the boundary between the pure 2k_F-SDW state and the corresponding coexistent state.Comment: 9 pages, 15 figures, to be published in J. Phys. Soc. Jpn. 69 No.3 (2000) 79

    Thermodynamics and magnetic field profiles in low-kappa type-II superconductors

    Full text link
    Two-dimensional low-kappa type-II superconductors are studied numerically within the Eilenberger equations of superconductivity. Depending on the Ginzburg-Landau parameter \kappa=\lambda/\xi vortex-vortex interaction can be attractive or purely repulsive. The sign of interaction is manifested as a first (second) order phase transition from Meissner to the mixed state. Temperature and field dependence of the magnetic field distribution in low-kappa type-II superconductors with attractive intervortex interaction is calculated. Theoretical results are compared to the experiment.Comment: 4 pages, 3 figure

    Spin-density wave versus superconducting fluctuations for quasi-one-dimensional electrons in two chains of Tomonaga-Luttinger liquids

    Full text link
    We study possible states at low temperatures by applying the renormalization-group method to two chains of Tomonaga-Luttinger liquids with both repulsive intrachain interactions and interchain hopping. As the energy decreases below the hopping energy, three distinct regions I, III, and II appear successively depending on properties of fluctuations. The crossover from the spin-density wave (SDW) state to superconducting (SC) state takes place in region III where there are the excitation gaps of transverse charge and spin fluctuations. The competition between SDW and SC states in region III is crucial to understanding the phase diagram in the quasi-one-dimensional organic conductors.Comment: 11 pages, Revtex format, 1 figure, to be published in Phys. Rev.

    Spin-triplet superconductivity in quasi-one dimension

    Full text link
    We consider a system with electron-phonon interaction, antiferromagnetic fluctuations and disconnected open Fermi surfaces. The existence of odd-parity superconductivity in this circumstance is shown for the first time. If it is applied to the quasi-one-dimensional systems like the organic conductors (TMTSF)_2X we obtain spin-triplet superconductivity with nodeless gap. Our result is also valid in higher dimensions(2d and 3d).Comment: 2 page

    Multiregional Satellite Precipitation Products Evaluation over Complex Terrain

    Get PDF
    An extensive evaluation of nine global-scale high-resolution satellite-based rainfall (SBR) products is performed using a minimum of 6 years (within the period of 2000-13) of reference rainfall data derived from rain gauge networks in nine mountainous regions across the globe. The SBR products are compared to a recently released global reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF). The study areas include the eastern Italian Alps, the Swiss Alps, the western Black Sea of Turkey, the French Cévennes, the Peruvian Andes, the Colombian Andes, the Himalayas over Nepal, the Blue Nile in East Africa, Taiwan, and the U.S. Rocky Mountains. Evaluation is performed at annual, monthly, and daily time scales and 0.25° spatial resolution. The SBR datasets are based on the following retrieval algorithms: Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA), the NOAA/Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN), and Global Satellite Mapping of Precipitation (GSMaP). SBR products are categorized into those that include gauge adjustment versus unadjusted. Results show that performance of SBR is highly dependent on the rainfall variability. Many SBR products usually underestimate wet season and overestimate dry season precipitation. The performance of gauge adjustment to the SBR products varies by region and depends greatly on the representativeness of the rain gauge network

    The High Magnetic Field Phase Diagram of a Quasi-One Dimensional Metal

    Full text link
    We present a unique high magnetic field phase of the quasi-one dimensional organic conductor (TMTSF)2_2ClO4_4. This phase, termed "Q-ClO4_4", is obtained by rapid thermal quenching to avoid ordering of the ClO4_4 anion. The magnetic field dependent phase of Q-ClO4_4 is distinctly different from that in the extensively studied annealed material. Q-ClO4_4 exhibits a spin density wave (SDW) transition at \approx 5 K which is strongly magnetic field dependent. This dependence is well described by the theoretical treatment of Bjelis and Maki. We show that Q-ClO4_4 provides a new B-T phase diagram in the hierarchy of low-dimensional organic metals (one-dimensional towards two-dimensional), and describe the temperature dependence of the of the quantum oscillations observed in the SDW phase.Comment: 10 pages, 4 figures, preprin

    Antiferromagnetic Phases of One-Dimensional Quarter-Filled Organic Conductors

    Full text link
    The magnetic structure of antiferromagnetically ordered phases of quasi-one-dimensional organic conductors is studied theoretically at absolute zero based on the mean field approximation to the quarter-filled band with on-site and nearest-neighbor Coulomb interaction. The differences in magnetic properties between the antiferromagnetic phase of (TMTTF)2_2X and the spin density wave phase in (TMTSF)2_2X are seen to be due to a varying degrees of roles played by the on-site Coulomb interaction. The nearest-neighbor Coulomb interaction introduces charge disproportionation, which has the same spatial periodicity as the Wigner crystal, accompanied by a modified antiferromagnetic phase. This is in accordance with the results of experiments on (TMTTF)2_2Br and (TMTTF)2_2SCN. Moreover, the antiferromagnetic phase of (DI-DCNQI)2_2Ag is predicted to have a similar antiferromagnetic spin structure.Comment: 8 pages, LaTeX, 4 figures, uses jpsj.sty, to be published in J. Phys. Soc. Jpn. 66 No. 5 (1997

    Coexistent State of Charge Density Wave and Spin Density Wave in One-Dimensional Quarter Filled Band Systems under Magnetic Fields

    Full text link
    We theoretically study how the coexistent state of the charge density wave and the spin density wave in the one-dimensional quarter filled band is enhanced by magnetic fields. We found that when the correlation between electrons is strong the spin density wave state is suppressed under high magnetic fields, whereas the charge density wave state still remains. This will be observed in experiments such as the X-ray measurement.Comment: 7 pages, 15 figure

    Possible Triplet Electron Pairing and an Anisotropic Spin Susceptibility in Organic Superconductors (TMTSF)_2 X

    Full text link
    We argue that (TMTSF)_2 PF_6 compound under pressure is likely a triplet superconductor with a vector order parameter d(k) \equiv (d_a(k) \neq 0, d_c(k) = ?, d_{b'}(k) = 0); |d_a(k)| > |d_c(k)|. It corresponds to an anisotropic spin susceptibility at T=0: \chi_{b'} = \chi_0, \chi_a \ll \chi_0, where \chi_0 is its value in a metallic phase. [The spin quantization axis, z, is parallel to a so-called b'-axis]. We show that the suggested order parameter explains why the upper critical field along the b'-axis exceeds all paramagnetic limiting fields, including that for a nonuniform superconducting state, whereas the upper critical field along the a-axis (a \perp b') is limited by the Pauli paramagnetic effects [I. J. Lee, M. J. Naughton, G. M. Danner and P. M. Chaikin, Phys. Rev. Lett. 78, 3555 (1997)]. The triplet order parameter is in agreement with the recent Knight shift measurements by I. J. Lee et al. as well as with the early results on a destruction of superconductivity by nonmagnetic impurities and on the absence of the Hebel-Slichter peak in the NMR relaxation rate.Comment: 4 pages, 1 eps figur
    corecore