55 research outputs found

    Observation of electro-activated localized structures in broad area VCSELs

    Get PDF
    We demonstrate experimentally the electro-activation of a localized optical structure in a coherently driven broad-area vertical-cavity surface-emitting laser (VCSEL) operated below threshold. Control is achieved by electro-optically steering a writing beam through a pre-programmable switch based on a photorefractive funnel waveguide.Comment: 5 Figure

    Observation of Fermi-Pasta-Ulam-Tsingou Recurrence and Its Exact Dynamics

    Get PDF
    One of the most controversial phenomena in nonlinear dynamics is the reappearance of initial conditions. Celebrated as the Fermi-Pasta-Ulam-Tsingou problem, the attempt to understand how these recurrences form during the complex evolution that leads to equilibrium has deeply influenced the entire development of nonlinear science. The enigma is rendered even more intriguing by the fact that integrable models predict recurrence as exact solutions, but the difficulties involved in upholding integrability for a sufficiently long dynamic has not allowed a quantitative experimental validation. In natural processes, coupling with the environment rapidly leads to thermalization, and finding nonlinear multimodal systems presenting multiple returns is a long-standing open challenge. Here, we report the observation of more than three Fermi-Pasta-Ulam-Tsingou recurrences for nonlinear optical spatial waves and demonstrate the control of the recurrent behavior through the phase and amplitude of the initial field. The recurrence period and phase shift are found to be in remarkable agreement with the exact recurrent solution of the nonlinear Schrödinger equation, while the recurrent behavior disappears as integrability is lost. These results identify the origin of the recurrence in the integrability of the underlying dynamics and allow us to achieve one of the basic aspirations of nonlinear dynamics: the reconstruction, after several return cycles, of the exact initial condition of the system, ultimately proving that the complex evolution can be accurately predicted in experimental conditions

    Measurement of scaling laws for shock waves in thermal nonlocal media

    Full text link
    We are able to detect the details of spatial optical collisionless wave-breaking through the high aperture imaging of a beam suffering shock in a fluorescent nonlinear nonlocal thermal medium. This allows us to directly measure how nonlocality and nonlinearity affect the point of shock formation and compare results with numerical simulations.Comment: 4 pages, 4 figure

    Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths

    Get PDF
    Propagating light beams with widths down to and below the optical wavelength require bulky large-aperture lenses and remain focused only for micrometric distances. Here, we report the observation of light beams that violate this localization/depth- of-focus law by shrinking as they propagate, allowing resolution to be maintained and increased over macroscopic propagation lengths. In nanodisordered ferroelectrics we observe a non-paraxial propagation of a sub-micrometre-sized beam for over 1,000 diffraction lengths, the narrowest visible beam reported to date. This unprecedented effect is caused by the nonlinear response of a dipolar glass, which transforms the leading opticalwave equation into a Klein-Gordon-type equation that describes a massive particle field. Our findings open the way to high-resolution optics over large depths of focus, and a route to merging bulk optics into nanodevices

    Bell's theorem without inequalities and without probabilities for two observers

    Full text link
    A proof of Bell's theorem using two maximally entangled states of two qubits is presented. It exhibits a similar logical structure to Hardy's argument of ``nonlocality without inequalities''. However, it works for 100% of the runs of a certain experiment. Therefore, it can also be viewed as a Greenberger-Horne-Zeilinger-like proof involving only two spacelike separated regions.Comment: REVTeX, 4 page

    A scheme for total quantum teleportation

    Get PDF
    We address the issue of totally teleporting the quantum state of an external particle, as opposed to studies on partial teleportation of external single-particle states, total teleportation of coherent states and encoded single-particle states, and intramolecular teleportation of nuclear spin states. We find a set of commuting observables whose measurement directly projects onto the Bell-basis and discuss a possible experiment, based on two-photon absorption, allowing, for the first time, total teleportation of the state of a single external photon through a direct projective measurement.Comment: 6 page

    IMG 305 - PEMBUNGKUSAN MAKANAN NOV.05.

    Get PDF
    We discuss the use of Agent-based Modelling for the development and testing of theories about emergent social phenomena in marketing and the social sciences in general. We address both theoretical aspects about the types of phenomena that are suitably addressed with this approach and practical guidelines to help plan and structure the development of a theory about the causes of such a phenomenon in conjunction with a matching ABM. We argue that research about complex social phenomena is still largely fundamental research and therefore an iterative and cyclical development process of both theory and model is to be expected. To better anticipate and manage this process, we provide theoretical and practical guidelines. These may help to identify and structure the domain of candidate explanations for a social phenomenon, and furthermore assist the process of model implementation and subsequent development. The main goal of this paper was to make research on complex social systems more accessible and help anticipate and structure the research process
    corecore