231 research outputs found

    Bubble concentration on spheres for supercritical elliptic problems

    Full text link
    We consider the supercritical Lane-Emden problem (P_\eps)\qquad -\Delta v= |v|^{p_\eps-1} v \ \hbox{in}\ \mathcal{A} ,\quad u=0\ \hbox{on}\ \partial\mathcal{A} where A\mathcal A is an annulus in \rr^{2m}, m2m\ge2 and p_\eps={(m+1)+2\over(m+1)-2}-\eps, \eps>0. We prove the existence of positive and sign changing solutions of (P_\eps) concentrating and blowing-up, as \eps\to0, on (m1)(m-1)-dimensional spheres. Using a reduction method (see Ruf-Srikanth (2010) J. Eur. Math. Soc. and Pacella-Srikanth (2012) arXiv:1210.0782)we transform problem (P_\eps) into a nonhomogeneous problem in an annulus \mathcal D\subset \rr^{m+1} which can be solved by a Ljapunov-Schmidt finite dimensional reduction

    Diminished production of T helper 1 cytokines correlates with T cell unresponsiveness to Brucella cytoplasmic proteins in chronic human brucellosis

    Get PDF
    This study evaluated the cellular immune response against Brucella species cytoplasmic protein (CP) in peripheral blood mononuclear cells (PBMC) of 25 patients with brucellosis. In vitro proliferation and cytokine gene expression and production were investigated. PBMC from 14 patients proliferated in response to CP (responder patients [RPs]) and cells from 11 patients did not (nonresponder patients [NRPs]). CP-specific interleukin (IL)-2 and interferon-γ were significantly induced in PBMC from RPs, compared with cells from NRPs. No significant differences were found in the production of IL-10 between the 2 groups. CP did not induce IL-4 production. A close relationship was observed between the clinical status of the patients and the T cell response against CP. Patient with acute infections responded to CP and induced production of T helper 1 (Th1) cytokines, whereas chronically infected patients did not. Diminished production of Th1 cytokines may contribute to T cell unresponsiveness in chronic human brucellosis.Facultad de Ciencias Exacta

    Brucella abortus–infected platelets modulate the activation of neutrophils

    Get PDF
    Brucellosis is a contagious disease caused by bacteria of the genus Brucella. Platelets (PLTs) have been widely involved in the modulation of the immune response. We have previously reported the modulation of Brucella abortus–mediated infection of monocytes. As a result, PLTs cooperate with monocytes and increase their inflammatory capacity, promoting the resolution of the infection. Extending these results, in this study we demonstrate that patients with brucellosis present slightly elevated levels of complexes between PLTs and both monocytes and neutrophils. We then assessed whether PLTs were capable of modulating functional aspects of neutrophils. The presence of PLTs throughout neutrophil infection increased the production of interleukin‐8, CD11b surface expression and reactive oxygen species formation, whereas it decreased the expression of CD62L, indicating an activated status of these cells. We next analyzed whether this modulation was mediated by released factors. To discriminate between these options, neutrophils were treated with supernatants collected from B. abortus–infected PLTs. Our results show that CD11b expression was induced by soluble factors of PLTs but direct contact between cell populations was needed to enhance the respiratory burst. Additionally, B. abortus–infected PLTs recruit polymorphonuclear (PMN) cells to the site of infection. Finally, the presence of PLTs did not modify the initial invasion of PMN cells by B. abortus but improved the control of the infection at extended times. Altogether, our results demonstrate that PLTs interact with neutrophils and promote a proinflammatory phenotype which could also contribute to the resolution of the infection.Fil: Trotta, Aldana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Milillo, María Ayelén. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Serafino, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Castillo Montañez, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Birnberg Weiss, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Delpino, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Giambartolomei, Guillermo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Fernández, Cecilia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Barrionuevo, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentin

    Uso de Trichoderma harzianum y Bacillus subtilis para el control de la Marchitez (Falso Mal de Panamá) por Fusarium en banano (Musa AAA ‘Cavendish’)

    Get PDF
    Esta investigación tuvo por objetivo evaluar técnica y económicamente la aplicación de Trichoderma harzianum y Bacillus subtilis para el control de Fusarium sp. y microorganismos asociados a este complejo de patógenos, causantes de la enfermedad conocida como marchitez (Falso mal de Panamá) en banano (‘Cavendish’), en la Finca Guacarito, municipio José Ángel Lamas, estado Aragua, Venezuela. En el estudio se aplicaron seis tratamientos con dosis diferenciadas de Trico-plus-A (Trichoderma harzianum), Prophytex (Bacillus subtilis) y una base de arroz con Trichoderma harzianum, además de un testigo sano en la finca referencial El Rodeo de las Flores. Se realizaron mediciones progresivas en todas las plantas por cada tratamiento, evaluándose altura de la planta, número de hojas (quincenal) y la observación de síntomas (semanal) desde su aparición. El análisis técnico económico se realizó estimando los costos por hectárea de las cantidades requeridas para cada biocontrolador y para la mano de obra utilizada en su aplicación. Los tratamientos no tuvieron efectos significativos para altura de planta y número de hojas, para el ANAVAR ; en el análisis de correspondencia múltiple, los tratamientos T4 (98 g/ha Trico-plus-A y 692 cc/ha Prophytex) y T5 ( 197 g/ha Trico-plus-A y 1.730 cc/ha Prophytex), obtuvieron mayor porcentaje de plantas sanas con 55,0 y 60,7%, respectivamente, con relaciones beneficio-costos (B/C) de 5,01 y 2,67, para T4 y T5, generando beneficios netos por tratamiento de 9.072.972,00 y 10.815.409,00 Bs·ha-1,respectivamente. ABSTRACT This research evaluated technical and economically the Trichoderma harzianum and Bacillus subtilis on the biological control of Fusarium sp., and other microorganisms associated to this pathogenic complex. This association induces the disease known as banana wilt (false Panama disease.) in Cavendish banana. The Rev. Fac. Agron. (UCV) 43 (2): 67-75. 2017. experiments were located at the Guacarito farm, Jose Angel Lamas Municipality, Aragua state, Venezuela. Six treatments of different doses of Trico-plus A (Trichoderma harzianum), Prophitex (Bacillus subtilis), and a rice Trichoderma harzianum mix were applied, plus a healthy control, at El Rodeo de las Flores nearby farm. Progressive measurements were made in all the plants in each treatment, evaluating plant height, leaves number (biweekly) and disease symptoms (weekly).The economic and technical analyses costs for one hectare for each biocontroler and for the labor used in its application, were estimated. . The analyses of variance did not showed any statistically difference for plant height and leaves number; but, the analyses of multiple correspondence (AMC) showed that two treatment (T4: 98 g/ha Trico-plus-A y 692 cc/ha Prophytex and T5: 197 g/ha Trico-plus-A y 1.730 cc/ha Prophytex) obtained the higher percentage of healthy plants (55.06 and 60.7%, respectively) with benefit-cost ratios (B / C) of 5.01 and 2.67, for T4 and T5, generating net benefits for treatment of 9,072,972.00 and 10,815,409.00 Bs · ha-1, respectively

    Unlipidated Outer Membrane Protein Omp16 (U-Omp16) from Brucella spp. as Nasal Adjuvant Induces a Th1 Immune Response and Modulates the Th2 Allergic Response to Cow's Milk Proteins

    Get PDF
    The discovery of novel mucosal adjuvants will help to develop new formulations to control infectious and allergic diseases. In this work we demonstrate that U-Omp16 from Brucella spp. delivered by the nasal route (i.n.) induced an inflammatory immune response in bronchoalveolar lavage (BAL) and lung tissues. Nasal co-administration of U-Omp16 with the model antigen (Ag) ovalbumin (OVA) increased the amount of Ag in lung tissues and induced OVA-specific systemic IgG and T helper (Th) 1 immune responses. The usefulness of U-Omp16 was also assessed in a mouse model of food allergy. U-Omp16 i.n. administration during sensitization ameliorated the hypersensitivity responses of sensitized mice upon oral exposure to Cow's Milk Protein (CMP), decreased clinical signs, reduced anti-CMP IgE serum antibodies and modulated the Th2 response in favor of Th1 immunity. Thus, U-Omp16 could be used as a broad Th1 mucosal adjuvant for different Ag formulations.Laboratorio de Investigaciones del Sistema Inmun

    Substance P induces localization of MIF/α1-inhibitor-3 complexes to umbrella cells via paracellular transit through the urothelium in the rat bladder

    Get PDF
    BACKGROUND: Macrophage migration inhibitory factor (MIF) is released into the intraluminal fluid during bladder inflammation in the rat complexed to α1-inhibitor-3 (A1-I3; a rodent proteinase inhibitor in the α-macroglobulin family). The location of A1-I3 in the bladder had not been investigated. Therefore, we examined the location of A1-I3 and MIF/A1-I3 complexes in the bladder and changes due to experimental inflammation. METHODS: Anesthetized male rats had bladders removed with no treatment (intact) or were injected with Substance P (SP; s.c.; saline vehicle). After one hour intraluminal fluid was removed, bladder was excised and MIF and A1-I3 levels were determined using ELISA and/or western-blotting. MIF co-immunoprecipitation determined MIF/A1-I3 complexes in the bladder. Bladder sections were immunostained for A1-I3 and MIF/A1-I3. RESULTS: A1-I3 immunostaining was observed in interstitial spaces throughout the bladder (including submucosa) but not urothelium in intact and saline-treated rats. RT-PCR showed that the bladder does not synthesize A1-I3, therefore, A1-I3 in the interstitial space of the bladder must be plasma derived. In SP-treated rats, A1-I3 in the bladder increased and A1-I3 was observed traversing through the urothelium. Umbrella cells that do not show MIF and/or A1-I3 immunostaining in intact or saline-treated rats, showed co-localization of MIF and A1-I3 after SP-treatment. Western blotting demonstrated that in the bladder MIF formed non-covalent interactions and also binds covalently to A1-I3 to form high molecular weight MIF/A1-I3 complexes (170, 130 and 75-kDa, respectively, verified by co-immunoprecipitation). SP-induced inflammation selectively reduced 170-kDa MIF/A1-I3 in the bladder while increasing 170 and 130-kDa MIF/A1-I3 in the intraluminal fluid. CONCLUSION: A1-I3 and MIF/A1-I3 complexes are resident in bladder interstitium. During SP-induced inflammation, MIF/A1-I3 complexes are released from the bladder into the lumen. Binding of MIF/A1-I3 complexes to urothelial cells during inflammation suggests these complexes participate in the inflammatory reaction through activation of receptors for MIF and/or for A1-I3

    Diminished production of T helper 1 cytokines correlates with T cell unresponsiveness to Brucella cytoplasmic proteins in chronic human brucellosis

    Get PDF
    This study evaluated the cellular immune response against Brucella species cytoplasmic protein (CP) in peripheral blood mononuclear cells (PBMC) of 25 patients with brucellosis. In vitro proliferation and cytokine gene expression and production were investigated. PBMC from 14 patients proliferated in response to CP (responder patients [RPs]) and cells from 11 patients did not (nonresponder patients [NRPs]). CP-specific interleukin (IL)-2 and interferon-γ were significantly induced in PBMC from RPs, compared with cells from NRPs. No significant differences were found in the production of IL-10 between the 2 groups. CP did not induce IL-4 production. A close relationship was observed between the clinical status of the patients and the T cell response against CP. Patient with acute infections responded to CP and induced production of T helper 1 (Th1) cytokines, whereas chronically infected patients did not. Diminished production of Th1 cytokines may contribute to T cell unresponsiveness in chronic human brucellosis.Facultad de Ciencias Exacta

    Massively HIV-1-infected macrophages exhibit a severely hampered ability to differentiate into osteoclasts

    Get PDF
    IntroductionOsteoclasts play a crucial role in bone resorption, and impairment of their differentiation can have significant implications for bone density, especially in individuals with HIV who may be at risk of altered bone health. The present study aimed to investigate the effects of HIV infection on osteoclast differentiation using primary human monocyte-derived macrophages as precursors. The study focused on assessing the impact of HIV infection on cellular adhesion, cathepsin K expression, resorptive activity, cytokine production, expression of co-receptors, and transcriptional regulation of key factors involved in osteoclastogenesis.MethodsPrimary human monocyte-derived macrophages were utilized as precursors for osteoclast differentiation. These precursors were infected with HIV, and the effects of different inoculum sizes and kinetics of viral replication were analyzed. Subsequently, osteoclastogenesis was evaluated by measuring cellular adhesion, cathepsin K expression, and resorptive activity. Furthermore, cytokine production was assessed by monitoring the production of IL-1β, RANK-L, and osteoclasts. The expression levels of co-receptors CCR5, CD9, and CD81 were measured before and after infection with HIV. The transcriptional levels of key factors for osteoclastogenesis (RANK, NFATc1, and DC-STAMP) were examined following HIV infection.ResultsRapid, massive, and productive HIV infection severely impaired osteoclast differentiation, leading to compromised cellular adhesion, cathepsin K expression, and resorptive activity. HIV infection resulted in an earlier production of IL-1β concurrent with RANK-L, thereby suppressing osteoclast production. Infection with a high inoculum of HIV increased the expression of the co-receptor CCR5, as well as the tetraspanins CD9 and CD81, which correlated with deficient osteoclastogenesis. Massive HIV infection of osteoclast precursors affected the transcriptional levels of key factors involved in osteoclastogenesis, including RANK, NFATc1, and DC-STAMP.ConclusionsThe effects of HIV infection on osteoclast precursors were found to be dependent on the size of the inoculum and the kinetics of viral replication. These findings underscore the importance of understanding the underlying mechanisms to develop novel strategies for the prevention and treatment of bone disorders in individuals with HIV

    Global Analysis of Quorum Sensing Targets in the Intracellular Pathogen Brucella melitensis 16 M

    Get PDF
    Many pathogenic bacteria use a regulatory process termed quorum sensing (QS) to produce and detect small diffusible molecules to synchronize gene expression within a population. In Gram-negative bacteria, the detection of, and response to, these molecules depends on transcriptional regulators belonging to the LuxR family. Such a system has been discovered in the intracellular pathogen Brucella melitensis, a Gram-negative bacterium responsible for brucellosis, a worldwide zoonosis that remains a serious public health concern in countries were the disease is endemic. Genes encoding two LuxR-type regulators, VjbR and BabR, have been identified in the genome of B. melitensis 16 M. A DeltavjbR mutant is highly attenuated in all experimental models of infection tested, suggesting a crucial role for QS in the virulence of Brucella. At present, no function has been attributed to BabR. The experiments described in this report indicate that 5% of the genes in the B. melitensis 16 M genome are regulated by VjbR and/or BabR, suggesting that QS is a global regulatory system in this bacterium. The overlap between BabR and VjbR targets suggest a cross-talk between these two regulators. Our results also demonstrate that VjbR and BabR regulate many genes and/or proteins involved in stress response, metabolism, and virulence, including those potentially involved in the adaptation of Brucella to the oxidative, pH, and nutritional stresses encountered within the host. These findings highlight the involvement of QS as a major regulatory system in Brucella and lead us to suggest that this regulatory system could participate in the spatial and sequential adaptation of Brucella strains to the host environment.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Potential role of fibroblast-like synoviocytes in joint damage induced by Brucella abortus infection through production and induction of matrix metalloproteinases

    Get PDF
    Arthritis is one of the most common complications of human brucellosis, but its pathogenic mechanisms have not been elucidated. Fibroblast-like synoviocytes (FLS) are known to be central mediators of joint damage in inflammatory arthritides through the production of matrix metalloproteinases (MMPs) that degrade collagen and of cytokines and chemokines that mediate the recruitment and activation of leukocytes. In this study we show that Brucella abortus infects and replicates in human FLS (SW982 cell line) in vitro and that infection results in the production of MMP-2 and proinflammatory mediators (interleukin-6 [IL-6], IL-8, monocyte chemotactic protein 1 [MCP-1], and granulocyte-macrophage colony-stimulating factor [GM-CSF]). Culture supernatants from Brucella-infected FLS induced the migration of monocytes and neutrophils in vitro and also induced these cells to secrete MMP-9 in a GM-CSF- and IL-6-dependent fashion, respectively. Reciprocally, culture supernatants from Brucella-infected monocytes and neutrophils induced FLS to produce MMP-2 in a tumor necrosis factor alpha (TNF-α)-dependent fashion. The secretion of proinflammatory mediators and MMP-2 by FLS did not depend on bacterial viability, since it was also induced by heat-killed B. abortus (HKBA) and by a model Brucella lipoprotein (L-Omp19). These responses were mediated by the recognition of B. abortus antigens through Toll-like receptor 2. The intra-articular injection of HKBA or L-Omp19 into the knee joint of mice resulted in the local induction of the proinflammatory mediators MMP-2 and MMP-9 and in the generation of a mixed inflammatory infiltrate. These results suggest that FLS, and phagocytes recruited by them to the infection focus, may be involved in joint damage during brucellar arthritis through the production of MMPs and proinflammatory mediators.Fil: Scian, Romina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Barrionuevo, Paula. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Giambartolomei, Guillermo Hernan. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: de Simone, Emilio Adrian. Universidad de Buenos Aires. Facultad de Cs.veterinarias. Catedra de Fisiologia Animal; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; ArgentinaFil: Vanzulli, Silvia I.. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Fossati, Carlos Alberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Baldi, Pablo Cesar. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Delpino, María Victoria. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentin
    corecore