108 research outputs found

    ModĂ©lisation de rĂ©seaux biochimiques bactĂ©riens – Un aller-retour entre donnĂ©es et modĂšles

    Get PDF
    With the advent of new technologies, experimental data in biology has exploded in size and complexity. It is now possible to simultaneously quantify different components of the cell at metabolic, transcriptomic, proteomic, and phenotypic levels. Connecting these different multi-scale and dynamic datasets provides an integrated view of cellular growth and informs us about the underlying molecular networks of genes, RNAs, proteins and metabolites that control the adaptation of the cell to the environment. This is the perspective offered by math-ematical modelling and computer simulation, allowing the association of different microscopic and macroscopic scales. This is a difficult problem however, because of the noise and the heterogeneity of the data, and of the size and the nonlinearity of the models. As a consequence, a large number of datasets are only partially analysed and underexploited. This manuscript describes the work I have carried out to improve the utilization of experimental data to gain a better understanding of the adaptation of bacterial growth to a changing environment. This work has been carried out within the Ibis project-team (Inria, UniversitĂ© Grenoble Alpes) with my colleagues, especially the students that I have had the chance to supervise. After the introductory Chapter 1, I describe in Chapter 2 the modelling of cellular networks using ordinary differential equations as well as simplification and approximation of the models depending on the nature of the available data and the questions addressed. These principles are applied in Chapter 3 to the qualitative analysis of the dynamics of gene networks in the context of the carbon starvation response in Escherichia colibacteria. With the general trend of biology becoming increasingly quantitative, modelling studies require obtaining reliable gene expression and metabolomic data, the analysis of which requires the development of suitable methods described in Chapter 4. Chapter 5 examines the strong link between the activity of the cellular gene expression machinery and bacterial growth rate. This understanding is used to develop a synthetic strain of E. coliwhose growth control makes it possible to divert the flow of precursors for growth towards the bioproduction of molecules of biotechnological interest. In Chapter 6, large-scale reconstructions of central carbon metabolism are used as platforms to interpret datasets regarding the post-transcriptional regulation of central carbon metabolisminE. coli. Chapter 7 is dedicated to the genome-scale analysis of mRNA decay by means of dynamic transcriptomics data. I describe in Chapter 8 ongoing and future projects towards the integrative analysis of microbial growth and resource allocation strategies. The scientific developments of these projects are expected to shape my own research activity in the coming years and that of the future project-team, under creation, that I will lead.Avec l’arrivĂ©e des nouvelles technologies, les donnĂ©es expĂ©rimentales en biologie ont explosĂ© en taille et complexitĂ©. Il est dĂ©sormais possible de quantifier en mĂȘme temps diffĂ©rents composants de la cellule au niveau mĂ©tabolique, transcriptomique, protĂ©omique et de caractĂ©ristiques phĂ©notypiques comme le taux de croissance. Relier ces diffĂ©rents jeux de donnĂ©e smulti-Ă©chelles et dynamiques permet d’obtenir une vision intĂ©grĂ©e de la croissance cellulaire,en nous renseignant sur la façon dont les rĂ©seaux molĂ©culaires sous-jacents de gĂšnes, ARN,protĂ©ines et mĂ©tabolites contrĂŽlent l’adaptation des cellules Ă  leur environnement. C’est le cadre qu’offrent la modĂ©lisation mathĂ©matique et la simulation informatique, en permettant d’associer les diffĂ©rentes Ă©chelles microscopiques et macroscopiques. C’est cependant un problĂšme difficile, du fait du bruit et de l’hĂ©tĂ©rogĂ©nĂ©itĂ© des donnĂ©es d’une part, et de la taille et la forme non-linĂ©aire des modĂšles d’autre part. La consĂ©quence est qu’un grand nombre de jeux de donnĂ©es ne sont que partiellement analysĂ©s et sous-exploitĂ©s.Ce manuscrit dĂ©crit les travaux que j’ai menĂ©s pour amĂ©liorer l’utilisation de donnĂ©es expĂ©rimentales afin d’obtenir une meilleure comprĂ©hension de l’adaptation de la croissance bactĂ©rienne Ă  un environnement changeant. Ces travaux ont Ă©tĂ© menĂ©s au sein de l’équipe-projet Ibis (Inria, UniversitĂ© Grenoble Alpes) avec mes collĂšgues, en particulier les Ă©tudiants que j’ai eu la chance d’encadrer. AprĂšs un premier chapitre d’introduction, je dĂ©cris en chapitre 2 les concepts de base de la modĂ©lisation des rĂ©seaux biochimiques. Je dĂ©taillerai en particulier les reconstructions du mĂ©tabolisme cellulaire Ă  l’échelle du gĂ©nome et la modĂ©lisation cinĂ©tique des rĂ©actions enzymatiques, dont les concepts sont utilisĂ©s dans plusieurs travaux prĂ©sentĂ©s dans ce manuscrit. La grande dimension et non linĂ©aritĂ© des modĂšles cinĂ©tiques complique l’estimation de leurs paramĂštres et l’analyse de leur dynamique. Je prĂ©senterai des travaux sur des simplifications appropriĂ©es pour ces modĂšles selon la nature des donnĂ©es Ă  disposition et les questions abordĂ©es, comme la rĂ©duction de modĂšles d’équations diffĂ©rentielles ordinaires (ODE) par sĂ©paration des Ă©chelles de temps ou l’approximation des modĂšles ODE par des modĂšles linĂ©aires par morceaux. Du fait de leur dĂ©rivation rigoureuse, les modĂšles simplifiĂ©s retiennent les principales caractĂ©ristiques des modĂšles ODE. Ces approches seront utilisĂ©es pour les diffĂ©rents modĂšles dynamiques prĂ©sentĂ©s dans ce manuscrit. Dans le chapitre 3, je prĂ©sente des travaux d’analyse de la dynamique d’un rĂ©seau de rĂ©gulation gĂ©nique contrĂŽlant la rĂ©ponse Ă  la privation en carbon de la bactĂ©rie Escherichiacoli. Lors de ces travaux, l’absence de donnĂ©es quantitatives dans la littĂ©rature ne permettait pas d’utiliser un modĂšle ODE pour dĂ©crire la dynamique du systĂšme. J’ai plutĂŽt analysĂ© la dynamique d’une version linĂ©aire par morceaux de ce modĂšle par une approche de modĂ©lisation et simulation qualitative. Je dĂ©crirai le principe de cette approche avec un exemple simple et son application Ă  l’étude du rĂ©seau de la rĂ©ponse au manque de source de carbone. Cette approche a permis pour la premiĂšre fois de relier la croissance d’E. coliavec les principaux rĂ©gulateurs transcriptionnels de la bactĂ©rie, et de comprendre les cascades de rĂ©gulations mises en place lors de la rĂ©ponse Ă  une privation en glucose ou du rĂ©dĂ©marrage de croissance sur ce sucre.L’évolution de la biologie en une science quantitative permet d’obtenir de nombreusesviidonnĂ©es d’expression gĂ©nique et du mĂ©tabolisme cellulaire. La fiabilitĂ© de ces donnĂ©es nĂ©cessite le dĂ©veloppement de mĂ©thodes d’analyse adaptĂ©es dĂ©crites dans le chapitre 4. Je dĂ©crirai des travaux sur l’analyse de donnĂ©es de gĂšnes rapporteurs et l’analyse de donnĂ©es de mĂ©tabolomique afin de pouvoir reconstruire des profils d’activitĂ©s de promoteurs et de concentrations de protĂ©ines dans le premier cas, et des vitesses d’import et secrĂ©tion de mĂ©tabolites extracellulaires,ainsi que des taux de croissance dans le second cas. Les donnĂ©es quantitatives utilisĂ©es dans le reste du manuscrit ont Ă©tĂ© analysĂ©es grĂące Ă  ces approches. Le chapitre 5 s’intĂ©resse au lien Ă©troit entre activitĂ© de la machinerie cellulaire d’expression gĂ©nique et taux de croissance bactĂ©rien. A l’aide de modĂšles simples intĂ©grant des donnĂ©es expĂ©rimentales de gĂšnes rapporteurs, nous montrons le rĂŽle clĂ© jouĂ© par la machinerie d’expression gĂ©nique dans l’adaptation globale de l’expression des gĂšnes au cours de la croissance. Ces travaux montrent que le fonctionnement des rĂ©seaux biochimiques ne peut ĂȘtre dĂ©connectĂ© de l’état physiologique de la cellule. Cette comprĂ©hension est utilisĂ©e pour l’ingĂ©nierie d’une souched’E. colisynthĂ©tique dont le contrĂŽle de la croissance permet de divertir les flux de prĂ©curseurs pour la croissance vers la bioproduction de molĂ©cules d’intĂ©rĂȘt biotechnologique. Dans le chapitre 6, de grandes reconstructions du mĂ©tabolisme et diffĂ©rents jeux de donnĂ©es (mĂ©tabolomique, activitĂ©s spĂ©cifiques) sont utilisĂ©es pour Ă©tudier la rĂ©gulation post-transcriptionnelle du mĂ©tabolisme central carbonĂ© chezE. coli. Ces travaux ont permis d’expliquer les consĂ©quences physiologiques de l’attĂ©nuation du gĂšne de la protĂ©ine CsrA et d’identifier des ARNm cibles de cette protĂ©ine. Nous avons en outre pu montrer que chezE. coliĂ©galement, le glycogĂšne joue un rĂŽle de stockage de sucre qui sert de source d’énergie pour faciliter la transition de la croissance bactĂ©rienne d’une source de carbone Ă  une autre.Le chapitre 7 s’intĂ©resse Ă  la dĂ©gradation de l’ensemble des ARNm d’E. coli. Je dĂ©crirai le dĂ©veloppement d’un modĂšle simple reposant sur des approches de quasi-Ă©quilibre et permettant de prĂ©dire la cinĂ©tique de dĂ©gradation de chacun des ARNm cellulaires de la bactĂ©rieE. coli. Nous avons pu formuler de nouvelles hypothĂšses sur le rĂŽle possible de la compĂ©tition entre ARNm pour leur fixation au dĂ©gradosome lors de l’adaptation de la croissance bactĂ©rienne Ă  des changements environnementaux. Nous montrons Ă©galement que ce mĂ©canisme de compĂ©tition joue un rĂŽle physiologique grĂące Ă  une approche de modĂ©lisation non linĂ©aire Ă  effets mixtes utilisant le modĂšle mĂ©canistique de la dĂ©gradation des ARNm et des jeux de donnĂ©es de transcriptomique dynamique mesurant la cinĂ©tique de disparition des ARNm cellulaires.Le chapitre 8 est dĂ©diĂ© Ă  des projets en cours et futurs sur l’analyse intĂ©grative de la croissance microbienne et les stratĂ©gies d’allocation de ressources des bactĂ©ries. Les travaux menĂ©s dans le cadre de ces projets vont dĂ©finir mon activitĂ© scientifique dans les annĂ©es Ă  venir et celle de la future Ă©quipe-projet, en cours de crĂ©ation, dont je prendrai la direction

    Model reduction and process analysis of biological models

    Get PDF
    International audienceUnderstanding the dynamical behavior of biological networks is complicated due to their large number of components and interactions. We present a method to analyse key processes for the system behavior, based on the a priori knowledge of the system trajectory and the simplification of mathematical models of these networks. The method consists of the model decomposition into biologically meaningful processes, whose activity or inactivity is evaluated during the time evolution of the system. The structure of the model is reduced to the core mechanisms involving active processes only. We assess the quality of the reduction by means of global relative errors and apply our method to two models of the circadian rhythm in Drosophila and the influence of RKIP on the ERK signaling pathway

    Symbolic Reachability Analysis of Genetic Regulatory Networks using Qualitative Abstractions

    Get PDF
    The switch-like character of gene regulation has motivated the use of hybrid, discrete-continuous models of genetic regulatory networks. While powerful techniques for the analysis, verification, and control of hybrid systems have been developed, the specificities of the biological application domain pose a number of challenges, notably the absence of quantitative information on parameter values and the size and complexity of networks of biological interest. We introduce a method for the analysis of reachability properties of genetic regulatory networks that is based on a class of discontinuous piecewise-affine (PA) differential equations well-adapted to the above constraints. More specifically, we introduce a hyperrectangular partition of the state space that forms the basis for a discrete abstraction preserving the sign of the derivatives of the state variables. The resulting discrete transition system provides a conservative approximation of the qualitative dynamics of the network and can be efficiently computed in a symbolic manner from inequality constraints on the parameters. The method has been implemented in the computer tool Genetic Network Analyzer (GNA), which has been applied to the analysis of a regulatory system whose functioning is not well-understood by biologists, the nutritional stress response in the bacterium Escherichia coli

    Experimental and computational validation of models of fluorescent and luminescent reporter genes in bacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fluorescent and luminescent reporter genes have become popular tools for the real-time monitoring of gene expression in living cells. However, mathematical models are necessary for extracting biologically meaningful quantities from the primary data.</p> <p>Results</p> <p>We present a rigorous method for deriving relative protein synthesis rates (mRNA concentrations) and protein concentrations by means of kinetic models of gene expression. We experimentally and computationally validate this approach in the case of the protein Fis, a global regulator of transcription in <it>Escherichia coli</it>. We show that the mRNA and protein concentration profiles predicted from the models agree quite well with direct measurements obtained by Northern and Western blots, respectively. Moreover, we present computational procedures for taking into account systematic biases like the folding time of the fluorescent reporter protein and differences in the half-lives of reporter and host gene products. The results show that large differences in protein half-lives, more than mRNA half-lives, may be critical for the interpretation of reporter gene data in the analysis of the dynamics of regulatory systems.</p> <p>Conclusions</p> <p>The paper contributes to the development of sound methods for the interpretation of reporter gene data, notably in the context of the reconstruction and validation of models of regulatory networks. The results have wide applicability for the analysis of gene expression in bacteria and may be extended to higher organisms.</p

    KOALAB: A new method for regulatory motif search. Illustration on alternative splicing regulation in HIV-1

    Get PDF
    Discovering heterogeneous regulatory motifs remains a difficult problem in biological sequence analysis. In this context, statistical learning or pattern search techniques on their own have shown some limitations. However, significant benefits can be taken from their complementarity. We selected two state-of-the-art methods: a multi-class support vector machine (M-SVM) from the statistical learning domain associated with a performant discrete pattern matching algorithm grappe, and in- tegrated them into a web technology based graphical software: KOALAB (KOupled Algorithmic and Learning Approach for Biology)1 . We applied our method on motif discovery within nucleic acid sequences using experimental SELEX results as training database for the M-SVM. An application dealing with the search for splicing regulatory protein binding sites in HIV-1 genome shows the potential of such an approach

    Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in E. coli

    Get PDF
    Gene regulatory networks consist of direct interactions, but also include indirect interactions mediated by metabolism. We investigate to which extent these indirect interactions arising from metabolic coupling influence the dynamics of the system. To this end, we build a qualitative model of the gene regulatory network controlling carbon assimilation in E. coli, and use this model to study the changes in gene expression following a diauxic shift from glucose to acetate. In particular, we compare the steady-state concentrations of enzymes and transcription regulators during growth on glucose and acetate, as well as the dynamic response of gene expression to the exhaustion of glucose and the subsequent assimilation of acetate. We find significant differences between the dynamics of the system in the absence and presence of metabolic coupling. This shows that interactions arising from metabolic coupling cannot be ignored when studying the dynamics of gene regulatory networks.Les rĂ©seaux de rĂ©gulation gĂ©niques sont composĂ©s d'interactions directes, mais incluent aussi des interactions indirectes dues au couplage avec le mĂ©tabolisme. Nous Ă©tudions dans quelle mesure ces interactions indirectes influencent la dynamique du systĂšme. Dans ce but, nous avons construit un modĂšle qualitatif du rĂ©seau de rĂ©gulation gĂ©nique contrĂŽlant l'assimilation du carbone chez E. coli et nous utilisons ce modĂšle pour Ă©tudier la rĂ©ponse gĂ©nique lors d'une diauxie glucose-acetate. Plus prĂ©cisĂ©ment, nous comparons les concentrations Ă  l'Ă©tat stationnaire des enzymes et des rĂ©gulateurs globaux lors d'une croissance sur glucose et sur acetate, ainsi que la dynamique de l'expression de gĂšnes suite Ă  l'Ă©puisement du glucose. Nous trouvons des diffĂ©rences significatives entre la dynamique prĂ©dite en absence et en prĂ©sence des interactions indirectes. Nos rĂ©sultats montrent que les interactions dues au couplage avec le mĂ©tabolisme doivent ĂȘtre prises en compte quand on s'intĂ©resse Ă  la dynamique de rĂ©seaux de rĂ©gulation gĂ©niques

    A Multi-Site Constraint Programming Model of Alternative Splicing Regulation

    Get PDF
    Alternative splicing is a key process in post-transcriptional regulation, by which several kinds of mature RNA can be obtained from the same premessenger RNA. The resulting combinatorial complexity contributes to biological diversity, especially in the case of the human immunodeficiency virus HIV-1. Using a constraint programming approach, we develop a model of the alternative splicing regulation in HIV-1. Our model integrates different scales (single site vs. multiple sites), and thus allows us to exploit several types of experimental data available to us

    A nonlinear mixed-effects approach for the mechanistic interpretation of time-series transcriptomics data

    Get PDF
    Mechanistic models are essential to unravel the molecular mechanisms driving cellular responses. However, the integration of high-throughput data with mechanistic knowledge is limited by the availability of scalable computational approaches able to disentangle biological and technical sources of variation. Results: We present an approach based on nonlinear mixed-effects modelling for the parameter estimation of large-scale mechanistic models from time-series transcriptomics data. It allows to factor out technical variability, to compensate for the limited number of conditions and time points by a population approach, and it incorporates mechanistic details to gain insight on the molecular causes of biological variability. We applied our approach for the biological interpretation of microarray and RNA-Seq gene expression profiles, with different levels of technical noise, but it is generalisable to numerous types of data. When integrated in a model describing the degradation kinetics of all cellular mRNAs, the data allowed to identify the targets of post-transcriptional regulatory mechanisms. Our approach paves the way for the interpretation of high-throughput biological data with more comprehensive mechanistic models. Availability: The Monolix script for estimation and output files are freely available at https://gitlab.inria. fr/tetienne/eccb_script, together with the microarray data. The RNA-Seq dataset is being prepared for publication (Roux et al., in preparation) and will be made available on demand upon acceptance of the article

    Symbolic Reachability Analysis of Genetic Regulatory Networks using Qualitative Abstraction

    Get PDF
    The switch-like character of the dynamics of genetic regulatory networks has attracted much attention from mathematical biologists and researchers on hybrid systems alike. While powerful techniques for the analysis, verification, and control of hybrid systems have been developed, the specificities of the biological application domain pose a number of challenges. In particular, while most networks of biological interest are large and complex, quantitative information on the kinetic parameters and molecular concentrations are usually absent. We introduce a method for the analysis of reachability properties of genetic regulatory networks that is based on a class of discontinuous piecewise-affine (PA) differential equations well-adapted to the above constraints. More specifically, we introduce a partition of the phase space by hyperrectangular regions in each of which the derivatives of the concentration variables have a unique sign pattern. This partition forms the basis for the definition of a discrete abstraction transforming the continuous transition system associated with a PADE model into a discrete or qualitative transition system. The discrete transition system is a simulation of the continuous transition system, thus providing a conservative approximation of the qualitative dynamics of the network. Moreover, the discrete transition system can be easily computed in a symbolic manner from inequality constraints on the parameters. The method has been implemented in a new prototype version of the computer tool Genetic Network Analyzer (GNA), which has been applied to the analysis of a regulatory system whose functioning is not well-understood by biologists, the nutritional stress response in the bacterium Escherichia col
    • 

    corecore