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Abstract: The switch-like character of gene regulation has motivated the use of hybrid,
discrete-continuous models of genetic regulatory networks. While powerful techniques for
the analysis, verification, and control of hybrid systems have been developed, the specifici-
ties of the biological application domain pose a number of challenges, notably the absence
of quantitative information on parameter values and the size and complexity of networks
of biological interest. We introduce a method for the analysis of reachability properties of
genetic regulatory networks that is based on a class of discontinuous piecewise-affine (PA)
differential equations well-adapted to the above constraints. More specifically, we introduce
a hyperrectangular partition of the state space that forms the basis for a discrete abstraction
preserving the sign of the derivatives of the state variables. The resulting discrete transition
system provides a conservative approximation of the qualitative dynamics of the network
and can be efficiently computed in a symbolic manner from inequality constraints on the
parameters. The method has been implemented in the computer tool Genetic Network
Analyzer (GNA), which has been applied to the analysis of a regulatory system whose func-
tioning is not well-understood by biologists, the nutritional stress response in the bacterium
Escherichia coli.
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Analyse symbolique d’atteignabilité de réseaux de

régulation génique par abstractions qualitatives

Résumé : Le fonctionnement binaire allum/teint des gnes a motiv l’utilisation de modles
hybrides pour reprsenter les rseaux de rgulations gniques. Bien que des techniques efficaces
aient t dveloppes pour l’analyse, la vrification et le contrle des systmes hybrides, les spcificits
des systmes biologiques considrs, en particulier l’absence d’informations quantitatives sur
les valeurs des paramtres et la taille et la complexit des rseaux d’intrt biologique, posent
un certain nombre de problmes nouveaux. Nous proposons une mthode pour l’analyse des
proprits d’atteignabilit des rseaux de rgulations gniques base sur une classe de modles bien
adapts aux contraintes mentionnes ci-dessus, utilisant des quations diffrentielles discontinues
et affines par morceaux. Plus prcisment, nous introduisons une partition hyperrectangulaire
de l’espace d’tat, servant dfinir une abstraction discrte qui prserve les signes des drives
des variables d’tat. Le systme de transitions discret ainsi dfini est une approximation
conservative de la dynamique du rseau et peut tre calcul symboliquement de faon efficace
partir de contraintes d’ingalit sur les paramtres. Cette mthode a t implmente dans l’outil
Genetic Network Analyzer (GNA), et utilise pour l’analyse d’un systme biologique encore
mal compris, celui de la rponse au stress nutritionnel chez la bactrie Escherichia coli.

Mots-clés : Equations diffrentielles affines par morceaux, analyse qualitative, abstraction
discrte, systmes hybrides, rseaux de rgulations gniques, biologie des systmes, rponse au
stress nutritionnel, Escherichia coli



Symbolic Reachability Analysis of Genetic Regulatory Networks using Qualitative Abstractions3

1 Introduction

The functioning and development of living organisms is controlled on the molecular level
by networks of genes, proteins, small molecules, and their mutual interactions, so-called
genetic regulatory networks. The dynamics of these networks is hybrid in nature, in the
sense that the continuous evolution of the concentration of proteins and other molecules is
punctuated by discrete changes in the activity of genes coding for the proteins. The switch-
like character of the dynamics of genetic regulatory networks has attracted much attention
from researchers on hybrid systems (e.g., [1, 11, 21, 28, 36]).

While powerful techniques for the analysis, verification, and control of hybrid systems
have been developed (see [5, 41] for reviews), the specificities of the biological application
domain pose a number of challenges [19, 46]. First, most genetic regulatory networks of
interest consist of a large number of genes that are involved in complex, interlocking feedback
loops. Second, the data available on both the structure and the dynamics of the networks is
currently essentially qualitative in nature, meaning that numerical values for concentration
variables and kinetic parameters describing the interactions are generally absent. The above
characteristics require hybrid-system methods and tools to be upscalable and capable of
dealing with qualitative information.

In this paper, we will show that a class of piecewise-affine differential equation (PADE)
models, originally introduced by Glass and Kauffman in the seventies [30], is particularly
suitable for dealing with the above challenges. The properties of these PADE models have
been well-studied in mathematical biology [15, 18, 22, 24, 25, 26, 29, 31, 32, 42, 43, 45].
The variables in the PADE models are the concentrations of the proteins encoded by the
genes, while step functions account for the discrete changes in gene activity occasioned by
the regulatory interactions. On a formal level, the PADE models are related to a class of
asynchronous logical models proposed by Thomas and colleagues [47, 48]. PADE models
and their logical relatives have been used for the study of a number of prokaryotic and
eukaryotic regulatory networks (see [23] for a review and references).

The particular form of the PADE models allows the continuous state space to be par-
titioned into hyperrectangular regions with equivalent qualitative dynamics, preserving the
sign pattern of the time derivatives of the solutions. We exploit this partition by associ-
ating to each PADE model a continuous transition system having equivalent reachability
properties. By means of a discrete or qualitative abstraction [2, 3, 4, 16, 34, 49], the con-
tinuous transition system is turned into a discrete transition system providing a compact
and qualitative description of the dynamics of the continuous system. Formally, there exists
a simulation relation between the continuous and discrete transition systems, that is, the
latter is a conservative approximation of the former. We show that the discrete transition
system is invariant over large ranges of parameter values and can be computed in a symbolic
manner from inequality constraints. Moreover, it is possible to design tailored algorithms
for computing the discrete transition system, which scale up to large and complex genetic
regulatory networks.

The paper continues our previous work on the qualitative analysis of the dynamics of
genetic regulatory networks by means of PADE models [21, 22]. The main novelty of this
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4 G. Batt et al.

contribution, a preliminary version of which was presented in [10], is the use of a more fine-
grained discrete abstraction, preserving the derivative sign pattern. This is an important
feature for the experimental validation of models of genetic regulatory networks, since mea-
surements of gene expression often result in observations of changes in the sign of derivatives.
Notwithstanding this increase in precision, the refinement does not threaten the applicabil-
ity of the approach to large and complex networks. This is illustrated by the analysis of a
network that is not yet well understood by biologists, the network controlling the carbon
starvation response of the bacterium Escherichia coli. The application of the method has
led to novel insights into how the adaptation of cell growth to nutritional stress emerges
from the network of molecular interactions.

The paper is organized as follows. In Sections 2 and 3 we specify the PADE models
of genetic regulatory networks in detail and discuss their mathematical properties, paying
special attention to complications arising from the discontinuities in the righthand-side of the
differential equations. In Section 4 we define a qualitative abstraction of the dynamics of PA
systems, based on a hyperrectangular partition of the state space. Section 5 introduces rules
to actually compute the discrete transition system induced by the qualitative abstraction
and the implementation of the rules in a computer tool called GNA. In Section 6 we illustrate
the application of the method to the analysis of the E. coli network. In the final section we
present our conclusions and discuss the results in the context of related work.

2 PADE models of genetic regulatory networks

The dynamics of genetic regulatory networks can be described by a class of piecewise-affine
differential equations (PADE) models of the following general form [30, 42]:

ẋ = h(x) = f(x) − g(x)x, x ∈ Ω \ Θ, (1)

where x = (x1, . . . , xn)′ is a vector of cellular protein concentrations, f = (f1, . . . , fn)′,
g = diag(g1, . . . , gn), Ω ⊂ R

n
≥0 is a bounded n-dimensional state space region, and Θ a

zero-measure subset of Ω (see below). The rate of change of each protein concentration xi,
i ∈ {1, . . . , n}, is thus defined as the difference of the rate of synthesis fi(x) and the rate of
degradation gi(x)xi of the protein.

The function fi : Ω\Θ → R≥0 expresses how the rate of synthesis of the protein encoded
by gene i depends on the concentrations x of the proteins in the cell. More specifically, the
function fi is defined as

fi(x) =
∑

l∈Li

κl
i b

l
i(x), (2)

where κl
i > 0 is a rate parameter, bli : Ω\Θ → {0, 1} a piecewise-constant regulation function,

and Li a possibly empty set of indices of regulation functions. The function gi expresses the
regulation of protein degradation. It is defined analogously to fi, except that we demand
that gi is strictly positive. In addition, in order to formally distinguish degradation rate
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Symbolic Reachability Analysis of Genetic Regulatory Networks using Qualitative Abstractions5

parameters from synthesis rate parameters, we will denote the former by γ instead of κ.
Notice that with the above definitions, h is a piecewise-affine (PA) vector-valued function.

A regulation function bli describes the conditions under which the protein encoded by
gene i is synthesized (degraded) at a rate κl

i (γl
i xi). It is defined in terms of step functions

and is the arithmetic equivalent of a Boolean function expressing the logic of gene regulation
[30, 47]. More precisely, the conditions for synthesis and degradation are expressed using
the step functions s+, s−:

s+(xj , θj) =

{

1, if xj > θj ,
0, if xj < θj ,

s−(xj , θj) = 1 − s+(xj , θj), (3)

where xj is an element of the state vector x and θj a constant denoting a threshold concen-
tration. Notice that the step functions are not defined at the thresholds.

Figure 1(a) gives an example of a simple genetic regulatory network consisting of two
genes, a and b. When a gene (a or b) is expressed, the corresponding protein (A or B)
is synthesized at a specified rate (κa or κb). Proteins A and B regulate the expression of
genes a and b. More specifically, protein B inhibits the expression of gene a, above a certain
threshold concentration θb, while protein A inhibits the expression of gene b above a thresh-
old concentration θ1a, and the expression of its own gene above a second, higher threshold
concentration θ2a. The degradation of the proteins is not regulated and proportional to the
concentration of the proteins (with degradation parameters γa or γb). The PADE model of
this network is shown in Figure 1(b).

ba

A
B

(a)

ẋa = κa s
−(xa, θ

2
a) s−(xb, θb) − γa xa,

ẋb = κb s
−(xa, θ

1
a) − γb xb.

(b)

Figure 1: (a) Example of a genetic regulatory network of two genes (a and b), each coding for
a regulatory protein (A and B). See Figure 6 for the legend. (b) PADE model corresponding
to the network in (a).

The use of step functions s±(xj , θj) in (1) gives rise to mathematical complications, be-
cause the step functions are undefined and discontinuous at xj = θj . Therefore, h is unde-
fined and may be discontinuous on the threshold hyperplanes Θ =

⋃

i∈{1,...,n},li∈{1,...,pi}
{x ∈

Ω | xi = θli
i }, where pi denotes the number of thresholds for the protein encoded by gene

i. In order to deal with this problem, we can follow an approach originally proposed by
Filippov [27] and widely used in control theory. It consists in extending the differential
equation ẋ = h(x), x ∈ Ω \ Θ, to the differential inclusion

ẋ ∈ K(x), with K(x) = co({ lim
y→x, y 6∈Θ

h(y)}), x ∈ Ω, (4)

RR n° 6136



6 G. Batt et al.

where co(P ) denotes the smallest closed convex set containing the set P , and
{limy→x, y 6∈Θ h(y)} the set of all limit values of h(y), for y 6∈ Θ and y → x. This ap-
proach has been applied in the context of genetic regulatory network modeling by Gouzé
and Sari [32].

In practice, K(x) may be difficult to compute because the smallest closed convex set
can be a complex polyhedron in Ω. We therefore employ an alternative extension of the
differential equation:

ẋ ∈ H(x), with H(x) = rect({ lim
y→x, y 6∈Θ

h(y)}), x ∈ Ω, (5)

where rect(P ) denotes the smallest closed hyperrectangular set containing the set P . The
advantage of using rect is that we can rewrite H(x) as a system of differential inclusions
ẋi ∈ Hi(x), i ∈ {1, . . . , n}. Notice that H(x) is an overapproximation of K(x), for all x ∈ Ω.

Formally, we define the PA system Σ as the triple (Ω,Θ, H), that is, the set-valued
function H given by (5), and defined on the n-dimensional state space Ω, with Θ the union
of the threshold hyperplanes. A solution of the PA system Σ on a time interval I is a
solution of the differential inclusion (5) on I, that is, an absolutely-continuous vector-valued
function ξ(t) such that ξ̇(t) ∈ H(ξ(t)) almost everywhere on I. In particular, the derivative
of ξ(t) may not exist, and therefore ξ̇(t) ∈ H(ξ(t)) may not hold, if ξ reaches or leaves Θ at
t.

For all x0 ∈ Ω and τ ∈ R>0 ∪ {∞}, ΞΣ(x0, τ) denotes the set of solutions ξ(t) of
the PA system Σ, for the initial condition ξ(0) = x0, and t ∈ [0, τ ]. The existence of at
least one solution ξ on some time interval [0, τ ], τ > 0, with initial condition ξ(0) = x0 is
guaranteed for all x0 in Ω [27]. However, there is, in general, not a unique solution. The
set ΞΣ =

⋃

x0∈Ω,τ>0 ΞΣ(x0, τ) is the set of all solutions, on a finite or infinite time interval,
of the PA system Σ. We restrict our analysis to the solutions in ΞΣ that reach and leave a
threshold hyperplane finitely-many times. The dynamics of Σ is thus defined by the set of
solutions ΞΣ.

3 Mathematical analysis of PA systems

3.1 Mode domains

The dynamical properties of the solutions of Σ can be analyzed in the n-dimensional state
space hyperrectangle Ω = Ω1 × . . . × Ωn, where Ωi = {xi ∈ R | 0 ≤ xi ≤ max i} and max i

denotes a maximum concentration for each protein, i ∈ {1, . . . , n}. In particular, we set
max i > maxx∈Ω\Θ fi(x)/gi(x). It is not difficult to show that under this condition Ω is a
positively invariant set.

For subsequent use, we introduce the notion of hyperrectangular partition of a set R =
R1 × . . . × Rn ⊆ Ω. The partition is induced by sets of hyperplanes orthogonal to one
of the axes xi, i ∈ {1, . . . , n}. More precisely, the hyperplanes orthogonal to the xi-axis
are given by the finite sets Λi ⊂ Ωi, where every λ ∈ Λi corresponds to a hyperplane

INRIA



Symbolic Reachability Analysis of Genetic Regulatory Networks using Qualitative Abstractions7

{x ∈ Ω | xi = λ}. The hyperrectangular partition of R induced by Λ = {Λ1, . . . ,Λn} is
defined as P = P1× . . .×Pn, where Pi, i ∈ {1, . . . , n}, is the interval partition of Ri induced
by Λi. That is, Pi is the partition of minimal cardinality of Ri, such that for every P ∈ Pi,
either P = {λ} for some λ ∈ Λi, or P is an interval containing no λ ∈ Λi. As an example,
consider the interval Ri = (r1, r2] and Λi = {λ1, λ2}, with r1 < λ1 < r2 < λ2. The interval
partition of Ri induced by Λi equals Pi = {(r1, λ1), {λ1}, (λ1, r2]}.

The (n− 1)-dimensional threshold hyperplanes introduced in Section 2 define a hyper-
rectangular partition of Ω.

Definition 1 (Mode domain partition). M is the hyperrectangular partition of Ω in-
duced by {θ1i , . . . , θ

pi

i }, i ∈ {1, . . . , n}. The sets M ∈ M are called mode domains.

The reason for speaking of mode domains will become clearer below, when we show that
the regulation of gene expression is identical in every M ∈ M, and thus corresponds to a
regulatory mode of the system.

max b

0

xb

max a xa
θ1
a θ2

a

M 1 M 2 M 4 M 5

M 6 M 7 M 8 M 9

M 11 M 12M 13 M 14M 15

M 10

M 3

θb

(a)

xa

xb

M 1 M 3
M 4

M 5
M 2

M 11

κa/γa

κb/γb

Ψ(M 5)

Ψ(M 11)

Ψ(M 3)Ψ(M 4)

Ψ(M 1)

(b)

Figure 2: (a) Mode domain partition of the state space for the model of Figure 1(b).
(b) Focal sets and vector fields associated with the mode domains M1 to M5, and M11.

Figure 2(a) shows the mode domain partition of the two-dimensional state space of the
example network. We distinguish between mode domains likeM2 andM7, which are located
on (intersections of) threshold hyperplanes, and mode domains like M1, which are not. The
former domains are called singular mode domains and the latter regular mode domains. We
denote by Mr and Ms the sets of regular and singular mode domains, respectively. Note
that M = Mr ∪Ms.

We next introduce some basic topological concepts. For every hyperrectangular set, R ⊆
Ω, of dimension k, k ∈ {0, . . . , n}, we define the supporting hyperplane of R, supp(R) ⊆ Ω,
as the k-dimensional hyperplane containing R. The boundary of R in supp(R), denoted

by ∂R, is defined as the set R \
◦

R, where R is the closure of R and
◦

R its interior, both
relative to supp(R). Suppose that M is a singular mode domain, i.e. M ∈ Ms. Then
R(M) is defined as the set of regular mode domains M ′ having M in their boundary, i.e.
R(M) = {M ′ ∈ Mr |M ⊆ ∂M ′}.

RR n° 6136



8 G. Batt et al.

Using the definition of the differential inclusion (5), it can be easily shown that in a
regular mode domain M ,

H(x) = {µM − νM x}, x ∈M, (6)

where µM is a vector of (sums of) positive synthesis rate constants and νM = diag(νM
1 , . . . , νM

n )
a diagonal matrix of (sums of) positive degradation rate constants [22]. We define the focal
set

Ψ(M) = {ψ(M)}, (7)

where ψ(M) = (νM )−1 µM , and repeat the following standard result [30].

Lemma 1. Let M ∈ Mr. Every solution ξ(t) ∈ ΞΣ in M monotonically converges towards
Ψ(M).

Proof. From (6) it follows that the solutions in a regular mode domain M are given by

ξ(t) = ψ(M) − e−νM t(ψ(M) − x0), for initial conditions x0 ∈ M . As a consequence, ξ(t)
monotonically converges towards Ψ(M) = {ψ(M)} as long as ξ(t) ∈M .

We will make the generic assumption that the focal sets Ψ(M), for all M ∈ Mr, are
not located in the threshold hyperplanes Θ. Figure 2(b) shows the focal sets of four regular
mode domains (M1, M3, M5 and M11). In the case of M11, we see that Ψ(M11) ⊆ M11,
so that ψ(M11) is an asymptotically stable equilibrium point of Σ.

In a singular mode domain, the right-hand side of the differential inclusion (5) reduces
to the following set:

H(x) = rect({µM ′

− νM ′

x |M ′ ∈ R(M)}), x ∈M. (8)

The focal set associated with the domain is now defined as

Ψ(M) = supp(M) ∩ rect({ψ(M ′) |M ′ ∈ R(M)}), (9)

which is generally not a single point in higher-dimensional systems. As will be shown below,
two different cases can be distinguished. If Ψ(M) is empty, then every solution passes
through M instantaneously (Lemma 2). If not, then some (but not necessarily all) solutions
arriving at M will remain in M for some time, sliding along the threshold hyperplanes
containingM (Lemma 3). In the latter case, weaker monotonicity properties hold (Lemmas 3
and 4).

Lemma 2. Let M ∈ Ms. Every solution ξ(t) ∈ ΞΣ arriving at M instantaneously crosses
the domain if and only if Ψ(M) = {}.

Proof. We first prove sufficiency. From the definition of Ψ(M) in a singular mode do-
main and Ψ(M) = {}, it follows that for some i ∈ {1, . . . , n} such that Mi is included
in a threshold hyperplane, the intersection of suppi(M) = {θli

i }, li ∈ {1, . . . , pi}, and

rect({ψi(M
′) | M ′ ∈ R(M)}) is empty. As a consequence, either ψi(M

′) > θli
i for all

INRIA



Symbolic Reachability Analysis of Genetic Regulatory Networks using Qualitative Abstractions9

M ′ ∈ R(M), or ψi(M
′) < θli

i for all M ′ ∈ R(M). From (8) and the hyperrectangular shape

of H(x), we obtain Hi(x) = rect({νM ′

i (ψi(M
′) − θli

i ) | M ′ ∈ R(M)}), for all x ∈ M . As
a consequence, either minHi(x) > 0 or maxHi(x) < 0, so that 0 6∈ Hi(x) and no solution
with ξ̇i(t) = 0 exists in M . Therefore, every solution arriving at M instantaneously crosses
the domain.

Necessity is proven by contraposition, by an argument similar to that given for sufficiency.
From Ψ(M) 6= {} we show that 0 ∈ Hi(x), for every x ∈ M and i ∈ {1, . . . , n} such that
Mi is included in a threshold hyperplane. We can then define solutions ξ(t) that satisfy
ξ̇i(t) = 0 on some time interval, that is, solutions that do not instantaneously cross M .

Lemma 3. Let M ∈ Ms and Ψ(M) 6= {}. For every solution ξ(t) ∈ ΞΣ in M , and every
i ∈ {1, . . . , n} such that Mi is included in a threshold hyperplane, it holds that ξ̇i(t) = 0.
For all other i, ξi(t) monotonically converges towards Ψi(M).

Proof. In order to remain in M , ξ(t) must slide along the threshold hyperplanes containing
M . Therefore, ξ̇i(t) = 0 for every x ∈ M and i ∈ {1, . . . , n} such that Mi is included in a
threshold hyperplane. For all other i, we must have ξ̇i(t) ∈ Hi(ξ(t)) almost everywhere, by
the definition of solutions of PA systems. Moreover, Hi(ξ(t)) = rect({νM ′

i (ψi(M
′)− ξi(t)) |

M ′ ∈ R(M)}). Let ξi(t) 6∈ Ψi(M), and ξi(t) < ψi(M
′) for all M ′ ∈ R(M) (the case

ξi(t) > ψi(M
′) goes analogously). It follows that minHi(ξ(t)) > 0, and hence that ξ̇i(t) > 0,

provided that ξ̇(t) ∈ H(ξ(t)). We thus infer that ξi(t) monotonically converges towards
Ψi(M).

Lemma 4. Let M ∈ Ms and Ψ(M) 6= {}. For every ψ ∈ Ψ(M) and x ∈M , there exists a
solution ξ(t) ∈ ΞΣ in M , with ξ(0) = x, such that ξ(t) monotonically converges towards ψ.

Proof. Let M+(i) = arg maxM ′∈R(M) ψi(M
′) and M−(i) = argminM ′∈R(M) ψi(M

′), for
all i ∈ {1, . . . , n}. Notice that due to the hyperrectangular shape of Ψ(M), we can write
ψi = αi ψi(M

−(i)) + (1 − αi) ψi(M
+(i)), for some αi ∈ [0, 1]. Moreover, after defining

βi ∈ [0, 1] such that βi = αi ν
M+(i)
i /(αi ν

M+(i)
i + (1 − αi) ν

M−(i)
i ), we introduce µi and νi

such that

ψi =
µi

νi

=
βi µ

M−(i)
i + (1 − βi) µ

M+(i)
i

βi ν
M−(i)
i + (1 − βi) ν

M+(i)
i

. (10)

That is, ψi is written as the quotient of µi and νi, which in turn can be defined as a convex

combination of µ
M−(i)
i , µ

M+(i)
i and ν

M−(i)
i , ν

M+(i)
i , respectively.

Now, construct a function ξ(t) = ψ−e−νt (ψ−x). This yields ξ̇i(t) = νi e
−νit (ψi−xi) =

νi (ψi − ξi(t)) = µi − νi ξi(t), for every i ∈ {1, . . . , n}. Following the definition of µi and νi

in (10), this gives

ξ̇i(t) = βi (µ
M−(i)
i − ν

M−(i)
i ξi(t)) + (1 − βi) (µ

M+(i)
i − ν

M+(i)
i ξi(t)). (11)

For ξ(t) to be a solution, it must satisfy ξ̇i(t) ∈ Hi(ξ(t)) almost everywhere, for every
i ∈ {1, . . . , n}. It can be directly verified that the expression for ξ̇i(t) in (11), with βi ∈ [0, 1],
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is included inHi(ξ(t)) as defined by (8). Hence, the condition is satisfied and ξ(t) is a solution
of Σ in M . Moreover, ξ(0) = x and ξ(t) monotonically converges towards ψ.

In the sequel, domains which every solution crosses instantaneously will be called in-
stantaneous domains, whereas domains in which at least some solutions remain for some
time will be referred to as persistent. Figure 2(b) shows two singular mode domains, M2

and M4. M2 is an instantaneous mode domain (Ψ(M2) = ∅), whereas M4 is a persistent
mode domain (Ψ(M4) = {(θ2a, 0)′}) in which solutions slide along the threshold plane. In
this simple example, it is intuitively clear how to define the flow in M4, given the dynamics
in M3 and M5. The use of differential inclusions as described above makes it possible to
define the flow in singular domains in a systematic and mathematically proper way.

The fact that every mode domain is associated with a unique focal set has provided
the basis for a discrete abstraction criterion employed in our previous work [15, 21, 22].
However, this criterion disregards the fact that the system does not always exhibit the same
qualitative dynamics in different parts of a mode domain, in the sense that the sign pattern
of the derivatives of the solutions may not be unique. Consider a solution ξ(t) ∈ ΞΣ in M11

in Figure 2(b): depending on whether ξb(t) is larger than, equal to, or smaller than the focal
concentration κb/γb in M11, ξb will be decreasing, steady, or increasing. As a consequence,
if we abstract the domain M11 away into a single discrete state, we will not be able to
unambiguously infer that solutions entering this domain from M6 are increasing in the xb-
dimension. This may lead to problems when comparing predictions from the model with gene
expression data, for instance the observed variation of the sign of ẋb. Today’s experimental
techniques, such as quantitative RT-PCR, reporter genes, and DNA microarrays, usually
produce information on changes in the sign of the derivatives of the concentration variables.

3.2 Flow domains

The mismatch between the description levels of the mathematical analysis and the exper-
imental data calls for a finer partitioning of the state space, which can then provide the
basis for a more adequate abstraction criterion. Along these lines, the regular and singular
mode domains distinguished above are repartitioned by means of the (n− 1)-dimensional
hyperplanes corresponding to the focal concentrations.

Definition 2 (Flow domain partition). DM is the hyperrectangular partition of a mode
domain M ∈ M induced by {ψi(M)}, if M is regular, and by {ψi(M

′) |M ′ ∈ R(M)}, if M
is singular, i ∈ {1, . . . , n}. D = ∪M∈MDM is a partition of Ω and the sets D ∈ D are called
flow domains.

The reason for speaking about flow domains is that, as will be seen below, in every
D ∈ D the flow of the system is qualitatively identical. The partitioning of the state space
into 27 flow domains is illustrated for the example system in Figure 3(a). Every flow domain
is included in a single mode domain, a relation captured by the surjective function mode:
D → M, defined as mode(D) = M , if and only if D ⊆ M . Similarly, the function flow :
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Symbolic Reachability Analysis of Genetic Regulatory Networks using Qualitative Abstractions11

Ω → D denotes the surjective mapping that associates a point in the state space to its flow
domain: flow (x) = D, if and only if x ∈ D.

max a

max b

0

θb

κb/γb

xb

xa
θ1
a θ2

a

D12.1
D12.2

D12.3D11.6D11.5

D11.4D11.3

D11.2D11.1

D4.1

D4.2

D14.1 D15.1D13.1

D5.2

D6.2D6.1 D7.1 D8.1 D9.1 D10.1

D3.2D2.2D1.1

D2.1 D3.1 D5.1

(a)

D12.1

D12.2

D12.3

D3.1 D5.1

D5.2

D10.1

D14.1

D3.2

D8.1

D2.1

D2.2
D1.1

D4.2

D11.3

D4.1

D15.1D13.1

D11.6

D11.4

D11.2

D11.1

D11.5

D6.1 D7.1
D6.2 D9.1

(b)

0 < θ1

a < θ2

a < κa/γa < maxa

0 < θb < κb/γb < max b

(c)

Figure 3: (a) Flow domain partition of the state space of the model in Figure 1(b). (b) State
transition graph of the corresponding qualitative transition system. For the sake of clarity,
self-transitions are represented by dots and transition labels are omitted. (c) Parameter
inequality constraints for which the graph in (b) is invariant.

The repartitioning of mode domain M11 leads to six flow domains (Figure 3(a)). The
finer partition guarantees that in every flow domain of M11, the derivatives have a unique
sign pattern. In D11.2, for instance, the xa-derivative is negative and the xb-derivative is
positive, whereas in D11.3 both derivatives equal zero (in fact, D11.3 coincides with ψ(M11)
and is an equilibrium point of the system). This property is true more generally. Consider a
point x in a flow domain D ∈ D. We denote by S(x) ∈ 2{−1,0,1}n

the derivative sign pattern
at x, that is, the set of derivative sign vectors of the solutions in D passing through x. More
formally,

S(x) = {sign(ξ̇(τ)) | ξ(t) ∈ ΞΣ in D, and ∃τ ≥ 0 : ξ(τ) = x and ξ̇(τ) ∈ H(ξ(τ))}. (12)

This gives the following central result.

Theorem 1 (Qualitatively-identical dynamics). For all x, y ∈ D and D ∈ D, S(x) =
S(y).

Proof. Note that due to the hyperrectangular shape of H(x), S(x) can be decomposed into
S1(x) × . . . × Sn(x), where Si(x) denotes the set of the ith components of the derivative
sign vectors of the solutions in D passing through x, i ∈ {1, . . . , n} (idem S(y)). Define
M = mode(D) and distinguish the cases (a)-(c).
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12 G. Batt et al.

(a) M ∈ Mr. Suppose 1 ∈ Si(x), but 1 6∈ Si(y), for any i ∈ {1, . . . , n} (for 0 and −1 the
argument is similar). By definition of Si(x) this means that ξ̇i(τ) > 0 for some ξ(t) ∈ ΞΣ in
D and τ ≥ 0, such that ξ(τ) = x. On the other hand, ϕ̇i(σ) ≤ 0 for all ϕ(t) ∈ ΞΣ in D and
σ ≥ 0, such that ϕ(σ) = y. Given that ξ̇i(τ) ∈ Hi(ξ(τ)) = {νM

i (ψi(M) − ξi(τ))}, due to
the definition of S(x), it follows that ξi(τ) = xi < ψi(M). Similarly, ϕi(σ) = yi ≥ ψi(M).
But then, by Definition 2, x and y are not located in the same flow domain D, contrary to
the assertion of the theorem. Therefore, 1 ∈ Si(x) implies 1 ∈ Si(y). The converse is shown
in the same way.

(b) M ∈ Ms and Ψ(M) = {}. No solution remains in D, so by definition S(x) =
S(y) = {}.

(c) M ∈ Ms and Ψ(M) 6= {}. For every i ∈ {1, . . . , n} such that Di is located in
a threshold or focal hyperplane, we must have ξ̇i(t) = 0 for solutions remaining in D.
Consequently, Si(x) = {0} (idem Si(y) = {0}). For all other i, suppose 1 ∈ Si(x), but
1 6∈ Si(y) (the argument for 0 and −1 is similar). It follows that ξ̇i(τ) > 0 for some ξ(t) ∈ ΞΣ

in D and τ ≥ 0, such that ξ(τ) = x. However, ϕ̇i(σ) ≤ 0 for all ϕ(t) ∈ ΞΣ in D and σ ≥ 0,
such that ϕ(σ) = y. From ξ̇i(τ) ∈ Hi(ξ(τ)) = rect({νM ′

i (ψi(M
′) − ξi(τ)) | M ′ ∈ R(M)}),

we conclude that ξi(τ) = xi < ψi(M
′), for some M ′ ∈ R(M). Similarly, we must have

ϕ̇i(σ) ∈ Hi(ϕ(σ)) = rect({νM ′

i (ψi(M
′) − ϕi(σ)) | M ′ ∈ R(M)}). Now, if there were

some M ′ ∈ R(M) such that ϕi(σ) = yi < ψi(M
′), then by Lemma 4 there would exist

a solution such that ϕ̇i(σ) > 0. Since this contradicts the assumption, we conclude that
ϕi(σ) = yi ≥ ψi(M

′), for all M ′ ∈ R(M). This implies, again by Definition 2, that x and
y are not located in the same flow domain D. Therefore, 1 ∈ Si(x) implies 1 ∈ Si(y) (and
conversely).

Notice that the definition of S as a set is a direct consequence of the use of differential
inclusions. Since the solutions of differential inclusions are not unique, several solutions
may pass through x and their derivatives may have a different sign in some dimension
i ∈ {1, . . . , n}. This situation does not occur in our two-gene example.

Theorem 1 suggests that the partition of the state space introduced in this section can
be used as an abstraction criterion better-adapted to the available experimental data on
gene expression. This idea will be further developed in the next section.

4 Qualitative abstraction of the dynamics of PA sys-

tems

4.1 Qualitative PA transition systems

As a preparatory step, we define a continuous transition system having the same reachability
properties as the original PA system Σ. Consider x ∈ D and x′ ∈ D′, where D,D′ ∈ D
are flow domains. If there exists a solution ξ(t) of Σ passing through x at time τ ∈ R≥0

and reaching x′ at time τ ′ ∈ R>0 ∪ {∞}, without leaving D ∪D′ in the time interval [τ, τ ′],
then the absolute continuity of ξ(t) implies that D and D′ are either equal or contiguous.
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Symbolic Reachability Analysis of Genetic Regulatory Networks using Qualitative Abstractions13

More precisely, one of the following three cases holds: D = D′, D ⊆ ∂D′, or D′ ⊆ ∂D.
We consequently distinguish three corresponding types of continuous transitions: internal,

denoted by x
int
−→ x′, dimension increasing, denoted by x

dim+

−→ x′, and dimension decreasing,

denoted by x
dim−

−→ x′. The latter two terms refer to the increase or decrease in dimension
of the flow domain when going from D to D′. This leads to the following definition:

Definition 3 (PA transition system). Σ-TS = (Ω, L,Π,→, |=) is the transition system
corresponding to the PA system Σ = (Ω,Θ, H), where:

1. Ω is the state space;

2. L = {int, dim+, dim−} is a set of labels denoting the three different types of transi-
tions;

3. Π = {Dsign = S | S ∈ 2{−1,0,1}n

} is a set of propositions describing the derivative
sign pattern of the concentration variables;

4. → is the transition relation describing the continuous evolution of the system, defined

by →⊆ Ω × L × Ω, such that x
l
→ x′ if and only if there exists ξ(t) ∈ ΞΣ and τ, τ ′,

such that 0 ≤ τ < τ ′, ξ(τ) = x, ξ(τ ′) = x′, and� if l = int, then for all t ∈ [τ, τ ′]: ξ(t) ∈ flow (x) = flow(x′),� if l = dim+, then for all t ∈ (τ, τ ′]: ξ(t) ∈ flow(x′) 6= flow (x),� if l = dim−, then for all t ∈ [τ, τ ′): ξ(t) ∈ flow(x) 6= flow(x′);

5. |= is the satisfaction relation of the propositions in Π, defined by |=⊆ Ω×Π, such that
x |= Dsign = S if and only if S = S(x).

The satisfaction relation |= thus associates to each point x in the state space a qualita-
tive description of the dynamics of the system at x. We define any sequence of points in
Ω, (x0, . . . , xm), m ≥ 0, as a run of Σ-TS if for all j ∈ {0, . . . ,m − 1}, there exists some

l ∈ L such that xj l
→ xj+1. It is not difficult to show that a PA system Σ and its corre-

sponding PA transition system Σ-TS have equivalent reachability properties (see the proof
in Appendix A).

Proposition 1 (Reachability equivalence). For all x, x′ ∈ Ω, there exists a solution ξ(t)
of Σ and τ, τ ′, such that 0 ≤ τ ≤ τ ′, ξ(τ) = x, and ξ(τ ′) = x′ if and only if there exists a
run (x0, . . . , xm) of Σ-TS such that x0 = x and xm = x′.

The continuous PA transition system has an infinite number of states and transitions,
which makes it difficult to verify dynamical properties of interest, for instance by means
of conventional tools for model checking [17]. However, we can define a discrete transition
system, with a finite number of states and transitions, which preserves important properties
of the qualitative dynamics of the system. In order to achieve this, we introduce the equiva-
lence relation ∼Ω ⊆ Ω×Ω induced by the partition D of the state space: x∼Ωx

′ if and only
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if flow (x) = flow(x′). From Theorem 1 it follows that ∼Ω is proposition-preserving [4, 16],
in the sense that for all x, x′ ∈ D and for all π ∈ Π, x |= π if and only if x′ |= π.

The discrete or qualitative abstraction of a PA transition system Σ-TS, called qualitative
PA transition system, is now defined as the quotient transition system of Σ-TS, given the
equivalence relation ∼Ω [4, 16].

Definition 4 (Qualitative PA transition system). The qualitative PA transition system
corresponding to the PA transition system Σ-TS = (Ω, L,Π,→, |=) is Σ-QTS =
(Ω/∼Ω

, L,Π,→∼Ω
, |=∼Ω

).

Proposition 2 (Qualitative PA transition system). Let Σ-QTS = (Ω/∼Ω
, L, Π,→∼Ω

, |=∼Ω
) be the qualitative PA transition system corresponding to the PA transition system

Σ-TS = (Ω, L,Π,→, |=). Then

1. Ω/∼Ω
= D;

2. →∼Ω
⊆ D × L × D, such that D

l
→∼Ω

D′ if and only if there exists ξ(t) ∈ ΞΣ and
τ, τ ′, 0 ≤ τ < τ ′, such that ξ(τ) ∈ D, ξ(τ ′) ∈ D′, and� if l = int, then for all t ∈ [τ, τ ′]: ξ(t) ∈ D = D′,� if l = dim+, then for all t ∈ (τ, τ ′]: ξ(t) ∈ D′ 6= D,� if l = dim−, then for all t ∈ [τ, τ ′): ξ(t) ∈ D 6= D′;

3. |=∼Ω
⊆ D × Π, such that D |= Dsign = S if and only if for all x ∈ D, S(x) = S.

Proof. First, the quotient space Ω/∼Ω
equals D by the definition of the equivalence relation

∼Ω. The second part of the proposition follows from the definition of →∼Ω
as a relation

on Ω/∼Ω
× L × Ω/∼Ω

such that D
l

→∼Ω
D′ if and only if there exist x ∈ D and x′ ∈ D′

such that x
l
→ x′ [4]. The expression for →∼Ω

is a direct consequence of Ω/∼Ω
= D and

Definition 3. Third, |=∼Ω
is a relation defined on Ω/∼Ω

×Π such that D |=∼Ω
π if and only

if there exists x ∈ D such that x |= π [4]. The properties considered here are of the type
Dsign = S (Definition 3). Theorem 1 implies the invariance of S for all x ∈ D.

Notice that the transitions labeled by dim+ or dim− connect two different flow domains,
since in Proposition 2 we require that D 6= D′. This corresponds to a continuous evolution
of the system along which it switches from one flow domain to another. On the contrary, the
transitions labeled by int correspond to the continuous evolution of the system in a single
flow domain.

As for Σ-TS, we define any sequence of flow domains (D0, . . . , Dm), m ≥ 0, as a
run of Σ-QTS if and only if for all j ∈ {0, . . . ,m − 1}, there exists l ∈ L such that

Dj l
→∼Ω

Dj+1. The satisfaction relation |=∼Ω
associates to every run a qualitative de-

scription of the evolution of the derivatives over time. Σ-QTS can be represented by a
directed graph G = (D,→∼Ω

), called the state transition graph. The paths in G represent

INRIA



Symbolic Reachability Analysis of Genetic Regulatory Networks using Qualitative Abstractions15

the runs of the system. The state transition graph corresponding to the two-gene example
is represented in Figure 3(b), and (D1.1, D2.2, D3.2, D4.2, D4.1) is an example of a run.

It directly follows from the definitions of quotient transition system and simulation of
transition systems [4, 16] that Σ-QTS is a simulation of Σ-TS. The converse is not true in
general, because Σ-QTS and Σ-TS are not bisimilar.

Proposition 3. Σ-QTS is a simulation of Σ-TS.

As a consequence of Proposition 3, if there exists a run (x0, . . . , xm) of Σ-TS, then there
also exists a run (D0, . . . , Dm) of Σ-QTS such that xi ∈ Di, for all i ∈ {0, . . . ,m}. In other
words, Σ-QTS is a conservative approximation of Σ-TS.

4.2 Invariance of qualitative PA transition systems in parameter

space

Σ-QTS provides a qualitative picture of the dynamics of a genetic regulatory network. This
picture generally depends on the values of the parameters in the PADE model. Since exact
numerical values for the thresholds θ and the production and degradation constants κ and
γ are usually not available, it is important to verify to which extent Σ-QTS is robust to
variations in the parameter values.

We therefore introduce a second equivalence relation∼Γ ⊆ Γ×Γ, defined on the parameter
space Γ ⊆ R

q
>0 of the PA system, with q the number of parameters in Σ. Two parameter

vectors p, p′ ∈ Γ are equivalent, if their corresponding qualitative PA transition systems, and
hence their state transition graphs, are isomorphic. Given the equivalence relation ∼Γ, we
denote by Γ/∼Γ

the quotient parameter space. That is, Γ/∼Γ
is a partition of the parameter

space consisting of sets over which the qualitative PA transition system is invariant.
For our purpose, subsets of Γ defined by the following parameter inequality constraints

are particularly interesting.

Definition 5 (Parameter inequality constraints). The parameter inequality constraints
of Σ are a set of total strict orders on {θ1i , . . . , θ

pi

i } ∪ {ψi(M) | M ∈ Mr}, for every i ∈
{1, . . . , n}.

The following theorem states that Σ-QTS is invariant over the subsets of Γ defined by
the inequality constraints of Definition 5. That is, the qualitative dynamics of Σ is robust to
changes in parameter values that do not change the total order of the thresholds and focal
concentrations.

Theorem 2 (Invariance). Let P ⊆ Γ be a set defined by the parameter inequality con-
straints of Σ. Then, there exists some Q ∈ Γ/∼Γ

such that P ⊆ Q.

Proof. Let p, p′ ∈ P be two parameter vectors. Given that p and p′ satisfy the same
parameter inequality constraints, they lead to the same mode and flow domain partitions
(Definitions 1 and 2), and thus the same quotient space Ω/∼Ω

= D. As will be seen in the
next section, the relations →∼Ω

and |=∼Ω
can be characterized by means of rules involving
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inequality constraints (Propositions 4 to 8). It can be directly verified that the necessary
and sufficient conditions in the rules apply in exactly the same way to p and p′.

Suppose that protein A inhibits the expression of gene b at a concentration lower than
that required for the inhibition of the expression of its own gene. This gives the inequality
constraint θ1a < θ2a in Figure 3(c). Moreover, if we further assume that when gene a is active,
the concentration of protein A tends towards a level above which autoinhibition occurs, we
obtain the inequality constraint κa/γa > θ2a. For these inequality constraints, and similar
constraints for protein B, the state transition graph in Figure 3(b) is invariant. Whereas
exact numerical values for the parameters are usually not available, the weaker information
required for the formulation of the inequality constraints can often be obtained from the
experimental literature. This will be illustrated in Section 6 for the E. coli example.

5 Symbolic computation of qualitative PA transition

system

The computation of the qualitative PA transition system Σ-QTS is greatly simplified by the
fact that the domains D and the focal sets Ψ(M) are hyperrectangular, which allows them
to be expressed as product sets, i.e. D = D1× . . .×Dn and Ψ(M) = Ψ1(M)× . . .×Ψn(M).
As a consequence, the computation can be carried out for each dimension separately. In
this section, we will describe rules to determine the set of states D, the satisfaction relation
|=∼Ω

, and the transition relation →∼Ω
, as well as their implementation in the computer tool

GNA. In practice the computations reduce to simple checks of ordering relations, which can
be carried out symbolically by means of the parameter inequality constraints.

5.1 Computation of states

In order to compute the states of Σ-QTS, we need to determine the flow domain partition
D of Ω (Proposition 2). This requires a total ordering of the threshold concentrations
{θ1i , . . . , θ

pi

i } and the focal concentrations {ψi(M) |M ∈ Mr}, i ∈ {1, . . . , n} (Definition 2).
The parameter inequality constraints of Σ provide this information.

Each flow domain has associated to it a number of properties, defined by the satisfaction
relation |=∼Ω

. From Proposition 2 it follows that computing the relation |=∼Ω
amounts to

computing S(x). The following two propositions, which are direct consequences of the basic
mathematical properties of solutions of PA systems discussed in Section 3, show how to
compute the derivative sign patterns.

Proposition 4 (Computation of Dsign). Let D ∈ D be an instantaneous flow domain.
D |=∼Ω

Dsign = {}.

Proof. There exists no solution remaining in D for some time, so by the definition of S(x),
we have S(x) = {}, for every x ∈ D.

INRIA



Symbolic Reachability Analysis of Genetic Regulatory Networks using Qualitative Abstractions17

Proposition 5 (Computation of Dsign). Let D ∈ D be a persistent flow domain.
D |=∼Ω

Dsign = S 6= {}, S = S1 × . . .× Sn, and for every i ∈ {1, . . . , n},

if Di is located in a threshold or focal concentration hyperplane, then Si = {0};

otherwise,� −1 ∈ Si, if and only if for all x ∈ D there exists ψ ∈ Ψ(mode(D)) such that
ψi − xi < 0;� 0 ∈ Si, if and only if for all x ∈ D there exists ψ ∈ Ψ(mode(D)) such that
ψi − xi = 0;� 1 ∈ Si, if and only if for all x ∈ D there exists ψ ∈ Ψ(mode(D)) such that
ψi − xi > 0.

Proof. Let M = mode(D). Because D is persistent, there exists a solution ξ(t) ∈ ΞΣ

remaining in D for some time. Let ξ(τ) = x ∈ D for some τ ≥ 0. From (12) we infer
S(x) 6= {}. By Theorem 1 this must hold for all x ∈ D, so S 6= {}.

Let Di be located in a threshold or focal concentration hyperplane. For every solution
ξ(t) in D, such that ξ(τ) = x ∈ D for some τ ≥ 0, the derivative of ξ(τ) exists, and
ξ̇(τ) ∈ H(ξ(τ)), it holds that ξ̇i(τ) = 0 and hence Si(x) = {0}. By Theorem 1 this must
hold for all x ∈ D, so Si = {0}.

Alternatively, Di is not located in a threshold or focal concentration hyperplane. We only
consider the case −1 ∈ Si (the argument for 0 and 1 is similar). We first prove necessity of
the inequality condition. −1 ∈ Si means that for all x ∈ D, there exists a solution ξ(t) ∈ ΞΣ

with ξ(τ) = x and τ ≥ 0, such that ξ̇i(τ) < 0 (Proposition 2 and (12)). If M is regular, then
Hi(ξ(τ)) = {νM

i (ψi(M) − ξi(τ))}. Since ξ̇i(τ) ∈ Hi(ξ(τ)), it follows that ψi(M) − xi < 0.

If M is singular, then Hi(ξ(τ)) = rect({νM ′

i (ψi(M
′) − ξi(τ)) | M ′ ∈ R(M)}). ξ̇i(τ) < 0

implies that there exists some ψ(M ′), M ′ ∈ R(M), such that ψi(M
′) − xi < 0. Conversely,

by Lemmas 1 and 4 there exist a solution ξ(t) ∈ ΞΣ in M monotonically converging from x
to ψ, with ξ(0) = x. Because ψi − xi < 0, we have ξ̇i(t) < 0, t ≥ 0, and thus −1 ∈ Si(x).
By Theorem 1 it follows that −1 ∈ Si, which proves sufficiency.

Notice that the total ordering on the threshold and focal concentrations expressed by the
parameter inequality constraints (Definition 5) allows one to decide which of the conditions
in the second part of Proposition 5 are satisfied. As a prerequisite, Ψ(mode(D)) needs
to be determined, which is also straightforward, even for singular mode domains, given
the definition of the focal set and the parameter inequality constraints. We illustrate the
application of Propositions 4 and 5 to our two-gene example.

First, consider the flow domain D1.1 in Figure 4(a). Ψ(mode(D1.1)) equals
{(κa/γa, κb/γb)

′}, so that D1.1 is persistent. We therefore apply Proposition 5 to deter-
mine S = Sa × Sb, such that D1.1 |=∼Ω

Dsign = S. Given that D1.1
a = [0, θ1a) and

ψa(mode(D1.1)) = κa/γa, and θ1a < κa/γa according to the parameter inequality constraints
in Figure 3(c), it follows that ψa − xa > 0, for all x ∈ D1.1 and ψ ∈ Ψ(mode(D1.1)). Conse-
quently, we infer Sa = {1}. Repeating this procedure in the xb-dimension, we similarly find
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max b

0

θb

κb/γb
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θ1
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max a
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Ψ(mode(D1.1))

(a)
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Figure 4: Derivative signs of flow domains: (a) Dsign(D1.1) = {(1, 1)′} and (b)
Dsign(D4.2) = {(0,−1)′} and Dsign(D2.2) = {}.

Sb = {1}, so that D1.1 |=∼Ω
Dsign = {(1, 1)′}. This means that the solutions in D1.1 are

strictly increasing in both dimensions.
As a second example, consider the flow domain D4.2, represented in Figure 4(b). M4 =

mode(D4.2) is a singular mode domain, so we first have to compute Ψ(M4). It can be
immediately verified that R(M4) = {M3,M5}, where ψ(M3) = (κa/γa, 0)′ and ψ(M5) =
(0, 0)′ (Figure 2(b)). As a consequence, rect({ψ(M3), ψ(M5)}) = [0, κa/γa] × {0}. From
the parameter inequality constraints in Figure 3(c) it follows that 0 < θ2a < κa/γa, so that
supp(M4) and rect({ψ(M3), ψ(M5)}) intersect at Ψ(M4) = {(θ2a, 0)′}. D4.2 is persistent, so
that Proposition 5 applies. We determine S = Sa×Sb, such thatD4.2 |=∼Ω

Dsign = S. Since
D4.2

a coincides with a threshold hyperplane, Sa = {0}. Bearing in mind that D4.2
b = (0, θb)

and ψb(M
4) = 0, we find Sb = {−1}. This results in D4.2 |=∼Ω

Dsign = {(0,−1)′}, which is
of course consistent with the fact that the solutions sliding along D4.2 monotonicaly converge
towards Ψ(M4), and are therefore strictly decreasing in the xb-dimension.

5.2 Computation of transitions between states

In Section 4.1 we have distinguished three types of transitions: int, dim−, and dim+. We
will formulate, for each of these three cases, transition rules that can be applied by means
of the parameter inequality constraints of Σ.

The transitions of type int are easy to determine, since by Proposition 2 they are nec-
essarily self-transitions, from a flow domain D to itself, which occur if and only if D is
persistent.

Proposition 6 (Computation of int transition). Let D ∈ D. D
int
−→∼Ω

D if and only
if D is persistent.

Proof. By Proposition 2 an int transition occurs if and only if there exist solutions ξ(t) ∈ ΞΣ

remaining in D. That is, if and only if D is persistent.
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Recall that the persistence of a domain can be determined by checking whether
Ψ(mode(D)) 6= {} (Lemmas 1 and 2). In our two-gene example, the focal set Ψ(M1) is
not empty. Therefore, D1.1 is persistent and there exists an int transition on D1.1. On the
other hand, Ψ(M2) is empty, so D2.2 is instantaneous and does not have an int transition
(Figure 3(b)).

A dim+ transition D
dim+

−→∼Ω
D′ is dimension increasing, and therefore requires that

D ⊆ ∂D′ (Section 4.1). In order to make D′ reachable from D, the solutions in D′ must
point away from D in the dimensions i ∈ {1, . . . , n} for which Di ⊆ ∂D′

i. This is expressed
by the following proposition.

Proposition 7 (Computation of dim+ transition). Let D,D′ ∈ D and D ⊆ ∂D′.

D
dim+

−→∼Ω
D′ if and only if Ψ(mode(D′)) 6= {} and there exist x ∈ D, x′ ∈ D′, and

ψ′ ∈ Ψ(mode(D′)), such that for all i ∈ {1, . . . , n} for which Di ⊆ ∂D′
i, it holds that

(ψ′
i − xi)(x

′
i − xi) > 0. (13)

Proof. Let M ′ = mode(D′). We first prove necessity by contraposition. If Ψ(M ′) = {},
then no solutions remain in D′ and a transition from D to D′ is not possible. Otherwise,
suppose that for all x ∈ D, x′ ∈ D′, and ψ′ ∈ Ψ(M ′), there exists some i ∈ {1, . . . , n} for
which Di ⊆ ∂D′

i and (ψ′
i − xi)(x

′
i − xi) ≤ 0. Furthermore, assume x′i − xi > 0 for all x ∈ D,

x′ ∈ D′ (the case x′i − xi < 0 goes analogously). As a consequence, ψ′
i ≤ xi < x′i, for all

x ∈ D, x′ ∈ D′, and ψ′ ∈ Ψ(M ′). By Lemmas 1 and 3, for all solutions ξ(t) ∈ ΞΣ in D′, ξi(t)
monotonically converges towards Ψi(M

′). As a consequence, no solution enters D′ from D

and there does not exist a transition D
dim+

−→∼Ω
D′.

Next, we prove sufficiency. Suppose Ψ(M ′) 6= {} and there exist x ∈ D, x′ ∈ D′, and
ψ′ ∈ Ψ(M ′), such that for all i ∈ {1, . . . , n} for which Di ⊆ ∂D′

i, it holds that (ψ′
i −xi)(x

′
i −

xi) > 0. By the definition of the flow domain partition (Definition 2) this holds for all x ∈ D
and x′ ∈ D′. We further assume that x′i −xi > 0 for all x ∈ D, x′ ∈ D′ (the case x′i −xi < 0
goes analogously). As a consequence, xi < x′i < ψ′

i for all x ∈ D and x′ ∈ D′, and some
ψ′ ∈ Ψ(M ′). By Lemma 4, for all x′ ∈ D′ there exists a solution ξ(t) ∈ ΞΣ in D′, with
ξ(0) = x′, which monotonically converges towards ψ′. More precisely, by the construction of
ξ(t) in the proof of Lemma 4, we have ξ̇i(t) > 0 as long as ξi(t) < φ′i. As a consequence, it

is possible for solutions to enter D′ from D and there exists a transition D
dim+

−→∼Ω
D′.

The total strict ordering defined by the parameter inequality constraints allows the nec-
essary and sufficient conditions for the existence of a dim+ transition to be straightforwardly
tested.

As an illustration of the proposition, consider the dim+ transition from D2.2 to D3.2

(Figure 5). Notice that D2.2 ∈ ∂D3.2. Moreover, D2.2
a ∈ ∂D3.2

a , so that x′a − xa > 0, for
all x ∈ D2.2 and x′ ∈ D3.2. Since ψa(mode(D3.2)) = κa/γa, and θ2a < κa/γa due to the
parameter inequality constraints (Figure 3(c)), we have ψ′

a − x′a > 0, for all x′ ∈ D3.2 and

ψ′ ∈ Ψ(mode(D3.2)). As a consequence, Proposition 7 allows us to infer that D2.2 dim+

−→∼Ω
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xa

max b

0

xb

θ1
a θ2

a

θb

D3.2

D3.1

D2.2 D4.2

D2.1

max a

Ψ(mode(D3.2))

κa/γa

Figure 5: dim+ transitions between flow domains. Representation of the state space, with
a trajectory entering D2.2 from D3.2.

D3.2. In a similar way, we can infer that there is a dim+ transition from D2.1 to D3.1.
However, as expected from the direction of the flow in Σ, a dim+ transition from D2.1 to
D3.2 is excluded, since ψ′

b − x′b < 0 and x′b − xb > 0, for all x ∈ D2.1, x′ ∈ D3.2 and
ψ′ ∈ Ψ(mode(D3.2)).

The rule for dim− transitions is almost symmetric and given in Appendix A.

5.3 Computer implementation

In summary, given a PADE system Σ and parameter inequality constraints, we can compute
its qualitative abstraction, that is, the qualitative PA transition system Σ-QTS, by means
of Propositions 4 to 8. Instead of numerically computing the derivative signs in the domains
and the transitions between domains, we have developed symbolic algorithms exploiting the
parameter inequality constraints of Definition 5. In particular, we map the total strict order
on Bi = {θ1i , . . . , θ

pi

i }∪{ψi(M) |M ∈ Mr}, i ∈ {1, . . . , n}, to the set Ci = {0, . . . , |Bi|+1}.
This allows Di and Ψi(M) to be expressed as intervals on C. The conditions in the proposi-
tions then naturally translate into simple inequality tests on integer coordinates of domains
and focal concentrations (see [7] for details).

The computation of Σ-QTS has been implemented in a new version of the computer tool
Genetic Network Analyzer (GNA) [9]. In order to facilitate the analysis of Σ-QTS, the state
transition graph generated by GNA can be exported to standard model-checking tools like
NuSMV and CADP [9].

In practice, since the number of flow domains in the state space grows exponentially
with the number of genes in the network, it is not usually possible to compute the complete
state transition graph. However, knowledge of the part of the graph reachable from a (set
of) initial flow domain(s) is often sufficient to answer most of the questions of biological
interest. In GNA it is possible to either compute the complete qualitative PA transition
system or carry out a reachability analysis from a specified set of initial domains. Moreover,
GNA identifies the equilibrium states, that is, the flow domains corresponding to (sets of)
equilibrium points, by testing whether D |=∼Ω

0 ∈ Dsign . For each of the equilibrium states,

INRIA



Symbolic Reachability Analysis of Genetic Regulatory Networks using Qualitative Abstractions21

the attractor set is computed, that is, the set of states from which the equilibrium state is
reachable.

6 Qualitative analysis of nutritional stress response in

E. coli

In case of nutritional stress, an Escherichia coli population abandons exponential growth
and enters a non-growth state called stationary phase. This growth-phase transition is
accompanied by numerous physiological changes in the bacteria, concerning among other
things the morphology and the metabolism of the cell, as well as gene expression [37]. On
the molecular level, the transition from exponential phase to stationary phase is controlled
by a complex genetic regulatory network integrating various environmental signals. The
molecular basis of the adaptation of the growth of E. coli to nutritional stress conditions
has been the focus of extensive studies for decades [33]. However, notwithstanding the large
amount of information accumulated on the genes, proteins, and other molecules known to be
involved in the stress adaptation process, there is currently no global understanding of how
the response of the cell emerges from the network of molecular interactions. This suggest
the use of modeling and simulation tools to study the dynamics of the stress response.
However, with some exceptions [14], numerical values for the parameters characterizing the
interactions and the molecular concentrations are absent, which makes it difficult to apply
traditional methods.

Activation

P1/P1’

CRP

P
Fis

P

P1 P2

P1 P2

TopA

P2

P1

Supercoiling

Activation

Abstract description of
a set of interactions

Inhibition

P

Carbon starvation signal

Synthesis of protein Fis
from gene fis

GyrAB

gyrAB

topA

crp

cya

stable RNAs

cAMP·CRP Cya

rrn

fis

Fis

fis

Figure 6: Network of key genes, proteins, and regulatory interactions involved in the nu-
tritional stress network in Escherichia coli. The contents of the boxes labelled ‘activation’
and ‘supercoiling’ are detailed in [44].

The above circumstances have motivated the qualitative analysis of the nutritional stress
response network in E. coli by means of the method presented in this paper [44]. On the
basis of literature data, we have decided to focus, as a first step, on a network of six genes
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that are believed to play a key role in the carbon starvation response (Figure 6). The
network includes genes involved in the transduction of the nutritional stress signal (the
global regulator crp and the adenylate cyclase cya), metabolism (the global regulator fis),
cellular growth (the rrn genes coding for stable RNAs), and DNA supercoiling, an important
modulator of gene expression (the topoisomerase topA and the gyrase gyrAB).

Based on this information, a PADE model of seven variables has been constructed, one
protein concentration variable for each of the six genes and one input variable (usignal )
representing the presence or absence of a carbon starvation signal [44]. As an illustration,
the piecewise-affine differential equation and the parameter inequality constraints for the
state variable xtopA are given below.

ẋtopA = κtopA s+(xgyrAB , θ
2
gyrAB ) s−(xtopA, θ

1
topA) s+(xfis , θ

4
fis) − γtopA xtopA

0 < θ1topA < θ2topA < κtopA/γtopA < max topA

The equation and inequalities state that in the presence of a high concentration of Fis
(s+(xfis , θ

4
fis) = 1), and of a high level of DNA supercoiling (s+(xgyrAB , θ

2
gyrAB )

· s−(xtopA, θ
1
topA) = 1), the concentration of TopA increases, converging towards a high

value (κtopA/γtopA > θ2topA).
Using the computer tool GNA, we have performed reachability analyses on the qualitative

PA transition system associated with the PADE model. The simulation of the entry into
stationary phase has given rise to a state transition graph of 66 states, computed in less
than 1 s on a PC (800MHz, 256Mb). Figure 7 represents the temporal evolution of two of
the protein concentrations in a run. The predicted expression profiles are consistent with
the observations [44].

The coupling of GNA with model-checking tools [9] has allowed a more systematic veri-
fication of observed dynamical properties. In [6], the measured concentration of the global
regulator Fis is shown to decrease and become steady in stationary phase, which is charac-
terized by a low concentration xrrn of stable RNAs. This can be expressed by means of the
following CTL formula:

EF(ẋfis < 0 ∧ EF(ẋfis = 0 ∧ xrrn < θrrn)). (14)

The verification of (14) takes a fraction of a second to complete and shows that the for-
mula holds for the state transition graph. The observation that the transcription of cya is
negatively regulated by cAMP and CRP [38] is also reproduced by the model. In fact, the
following CTL formula is satisfied by the graph:

AG(xcrp > θ3crp ∧ xcya > θ3cya ∧ usignal > θsignal → EF ẋcya < 0). (15)

The formula expresses that always, for high levels of CRP and Cya, in the presence of the
carbon starvation signal, the system can eventually reach a state in which the expression of
cya decreases.
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Figure 7: Temporal evolution of Fis and CRP concentrations in the run (D1, . . . , D31). For
every Dj in the run, the profiles display the corresponding concentration intervals Dj

fis and

Dj
crp. The symbols ↑, ↓, and ◦ indicate the sign of the derivative for persistent states.

The application of the method has led to new insights into how the carbon starvation
signal results in the slowing-down of bacterial growth characteristic for the stationary phase
[44]. In summary, the analysis has brought to the fore the role of the mutual inhibition of Fis
and CRP, which in the presence of a carbon starvation signal results in the inhibition of fis
and in the activation of crp. This causes a decrease of the expression of the rrn genes, which
code for stable RNAs and are a reliable indicator of cellular growth. In addition to this
increased understanding of the transition from exponential to stationary phase, the model
has yielded predictions on the occurrence of damped oscillations in some of the protein
concentrations after a nutrient upshift, predictions that are being tested in our laboratory.

We are currently working on extended models of the nutritional stress response network.
The increase in the number of variables naturally leads to the generation of larger state
transition graphs by our method. In order to investigate the upscalability of the method
more systematically, we have applied it to a PADE model with nine state and two input
variables, describing the initiation of sporulation in the bacterium Bacillus subtilis [20]. More
specifically, we have analyzed the response of the cell to carbon starvation in the case of the
wild-type and a dozen of mutant strains. On average, the state transition graphs generated
by our method consist of 585 states, with a maximum of 2234 states (computed in 14 s).
The analysis of graphs of this size does not pose any problems for current model-checking
tools, which shows that our approach is upscalable to large and complex networks.
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7 Discussion and conclusions

We have presented a method for the qualitative analysis of hybrid models of genetic regula-
tory networks. The method is based on a class of piecewise-affine differential equation models
that has been well-studied in mathematical biology. By defining a qualitative abstraction
preserving the sign pattern of the derivatives of concentration variables, the continuous PA
transition system associated with a PADE model is transformed into a discrete or qualitative
PA transition system whose properties can be analyzed by means of classical model-checking
tools. The qualitative PA transition system is a conservative approximation of the under-
lying continuous PA transition system and can be easily computed in a symbolic manner
by exploiting inequality constraints on the parameters. We have applied the implementa-
tion of the method to the analysis of a system whose functioning is not well-understood by
biologists today, the nutritional stress response in the bacterium E. coli.

θ2
cya θ3

cya max cya
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ẋcrp > 0 ẋcrp > 0 ẋcrp > 0 ẋcrp = 0

D30.1
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Figure 8: (a) Two-dimensional projection of a slice of the phase space of the E. coli stress
response model for the variables xcrp and xcya . (b)-(c) Partitioning into (b) mode do-
mains and (c) flow domains of the projection. (d)-(e) Excerpts of the state transition graph
resulting from the qualitative abstraction based on (d) mode domains and (e) flow domains.

The results of this paper extend our previous work on the qualitative analysis of PADE
models of genetic regulatory networks [21, 22]. In particular, we have defined a refined
partitioning of the state space which underlies a qualitative abstraction preserving stronger
properties of the qualitative dynamics of the system, i.e. the derivative sign pattern. The
resulting qualitative PA transition system is better adapted to the abstraction level of the
experimental data, in the sense that it avoids verification of dynamical properties to be
over-conservative. Consider Figure 8, which compares two-dimensional projections of a
state-space slice of the stress response model. Depending on whether mode domains or flow
domains are used as the abstraction criterion, the state transition graph will be different
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(compare (d) and (e) of Figure 8). Whereas the CTL formula EF (ẋcrp > 0 ∧EF (ẋcrp < 0))
holds for the graph in (d), this is not true in (e), thus revealing that the coarse-grained
abstraction may cause models to escape refutation by available experimental data. Judging
from our experience with several PADE models of bacterial regulatory networks, the use of
a fine-grained abstractions leads to only a modest increase in the size of the state transition
graph [10]. That is, the increase in precision does not exclude the application of the refined
abstraction to larger systems.

The hybrid character of the dynamics of genetic regulatory networks has stimulated the
interest in the application of hybrid-systems methods and tools over the past few years [1, 11,
21, 28, 36]. Our approach differs from this related work on several counts. Whereas we use
piecewise-affine deterministic models, other groups have employed multi-affine and related
deterministic models [11, 42] or stochastic models [36]. These models are less restrictive
and thus provide a more precise description of the network interactions. However, they
are more difficult to analyze and in higher dimensions usually require the application of
numerical techniques. This is not straightforward to achieve for most biological systems,
since numerical information on parameter values is usually imprecise or simply not available.

The PADE models (1) in this paper have been well-studied in mathematical biology
[15, 18, 22, 24, 25, 26, 29, 30, 31, 32, 42, 43, 45, 47], and have also formed the basis for other
work in the field of hybrid systems [28]. However, contrary to [28], we take into account
the dynamics of the system on threshold hyperplanes, where equilibrium points and other
phenomena of interest may occur [15, 32] (but see [1] for ideas on how to extend the approach
in [28]). In [28] the partition of the state space is dynamically refined, so as to arrive at a
qualitative PA transition system that is a better approximation of the original PA system.
This requires the use of quantifier elimination methods [35] which allow to decide more
general and more powerful properties than the rules proposed in Section 5 of this paper, but
that also incur higher computational costs. The approach of this paper allows us to fully
exploit the favorable mathematical properties of the PADE models (1), and thus promote
the upscalability of the method to large and complex networks (Section 6).

From a more general perspective, our approach can be seen as an application of the
notion of discrete abstraction, commonly used to study the dynamics of systems with an
infinite number of states [2, 3, 4, 16, 34, 49]. Much work has focused on the identification
of classes of continuous and hybrid dynamical systems for which bisimulation relations with
finite transition systems are guaranteed to exist. The results of this paper can be seen as
showing that the weaker simulation relation may also be of considerable practical interest,
especially for classes of systems for which the existence of a finite bisimulation cannot be
guaranteed. Discrete abstraction criteria similar to the one used in this paper, based on
the sign of the (higher) derivatives of continuous variables, have been proposed by other
authors in the fields of hybrids systems [2, 49] and control theory and qualitative reasoning
[12, 13, 39, 40]. In comparison with these approaches, our work deals with a less general class
of models. However, this allows the development and implementation of efficient, tailored
algorithms for the practical computation of the qualitative dynamics of the system, even on
(intersections of) threshold hyperplanes, where discontinuities may occur.
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The possibility to use efficient algorithms for the computation of the qualitative PA
transition system rests, to a large extent, on the approximation of the set K(x) in (4)
by the set H(x) in (5). Because the latter set is hyperrectangular, the computation of
domains, transitions, and sign patterns can be carried out seperately in every dimension,
using the ordering of parameter values fixed by inequality constraints. Because H(x) is an
overapproximation of K(x), the state transition graph may contain sequences of states that
would not occur in the graph obtained by using K(x). As a consequence, a PADE model
may fail to be rejected by an observed time-series of measurements of the concentration
variables. However, due to the fact that the approximation of H(x) by K(x) is conservative,
a PADE model will never be falsely rejected. An obvious direction for further research would
be to see whether finer overapproximations of K(x) can be found that still allow tailored
symbolic algorithms to be used that do not compromise the upscalability of the method.
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A Proofs

Proposition 1 (Reachability equivalence). For all x, x′ ∈ Ω, there exists a solution
ξ(t) ∈ Σ and τ, τ ′, such that 0 ≤ τ ≤ τ ′, ξ(τ) = x, and ξ(τ ′) = x′ if and only if there exists
a run (x0, . . . , xm) of Σ-TS such that x0 = x and xm = x′.

Proof. We first prove necessity. Consider two points x, x′ ∈ Ω, a solution ξ(t) ∈ ΞΣ, and
τ, τ ′ such that 0 ≤ τ ≤ τ ′, ξ(τ) = x, and ξ(τ ′) = x′. If τ = τ ′, then (ξ(τ)) is a trivial
run satisfying the conditions of the proposition. Otherwise, τ < τ ′ and we denote by
D0, . . . , Dm the time-ordered sequence of flow domains traversed by ξ(t) on the time interval
[τ, τ ′]. D0, . . . , Dm is a finite sequence, since by definition any solution of Σ reaches and
leaves finitely-many times a threshold hyperplane during a time interval. If m = 0, then by
Definition 3 there exists an int transition from ξ(τ) to ξ(τ ′), and consequently, (ξ(τ), ξ(τ ′))
is a run satisfying the conditions of the proposition. Otherwise, m > 0, and we denote by
σ0, . . . , σm−1, the switching times, formally defined as σj = sup {t ∈ [τ, τ ′] | ξ(t) ∈ Dj},
j ∈ {0, . . . ,m − 1}. Finally, we introduce a sequence of time instants τ0, . . . , τm such that
ξ(τ j) ∈ Dj , j ∈ {0, . . . ,m}. More precisely, we define τ0 as τ , τ j as (σj−1 + σj)/2, for
all j ∈ {1, . . . ,m − 1}, and τm as τ ′. It is not difficult to show by induction on j that
(ξ(τ0), . . . , ξ(τ j)) is a run, for every j ∈ {0, . . . ,m} [7].

Next, we prove sufficiency. Consider a run (x0, . . . , xm) of Σ-TS, with x0 = x and
xm = x′. If m = 0, then x = x′ and any solution ξ(t) ∈ ΞΣ with ξ(0) = x satisfies the
conditions of the proposition for τ = τ ′ = 0. In the sequel, we suppose m > 0. Then, by
Definition 3, there exists a sequence of solutions (ξ0(t), . . . , ξm−1(t)), and of time instants
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(τ0, . . . , τm), such that for all j ∈ {0, . . .m−1}, ξj(t) is defined on the time interval [τ j , τ j+1],
with τ j < τ j+1, and satisfies ξj(τ j) = xj and ξj(τ j+1) = xj+1. It can be straightforwardly
shown [7] that the concatenation of the solutions ξj(t), j ∈ {0, . . . ,m−1}, is a solution that
satisfies the conditions of the proposition.

Proposition 8 (Computation of dim− transition). Let D,D′ ∈ D and D′ ⊆ ∂D.

D
dim−

−→ ∼Ω
D′ if and only if Ψ(mode(D)) 6= {} and there exist x ∈ D, x′ ∈ D′, and

ψ ∈ Ψ(mode(D)), such that either (a) for all i ∈ {1, . . . , n} for which D′
i ⊆ ∂Di, it holds

that
(ψi − x′i)(x

′
i − xi) > 0, (16)

or (b) it holds that ψ = x′.

Proof. Let M = mode(D). We first prove necessity by contraposition. If Ψ(M) = {}, then
there exists no solution remaining in D for some time, and a transition from D to D′ is
not possible. Otherwise, suppose that for all x ∈ D, x′ ∈ D′, and ψ ∈ Ψ(M), there exists
some i ∈ {1, . . . , n} for which D′

i ⊆ ∂Di, (ψi − x′i)(x
′
i − xi) ≤ 0, and ψ 6= x′. We assume

x′i − xi > 0 for all x ∈ D, x′ ∈ D′ (the case x′i − xi < 0 goes analogously).
If the inequality is strict, then ψi < x′i, for all x′ ∈ D′ and ψ ∈ Ψ(M). By Lemma 3, for all

solutions ξ(t) ∈ ΞΣ in D, ξi(t) monotonically converges towards Ψi(M). As a consequence,

no solution enters D′ from D, and there does not exist a transition D
dim−

−→ ∼Ω
D′. If the

inequality is not strict, then by definition of the flow domain partition (Definition 2), we
have ψi = x′i for all x′ ∈ D′ and ψ ∈ Ψ(M). From the same definition it also follows that
either ψi = ψi(M) (if M is regular) or ψi = maxM ′∈R(M) ψi(M

′) (if M is singular). It
can be shown by construction in the way of the proof of Lemma 4 that solutions reach D′

only asymptotically, as t → ∞. Moreover, from the definition of Ψ(M) and Lemmas 1 and
3, it follows for every j ∈ {1, . . . , n} that either ξj(t) ∈ Ψj(M) or that ξj(t) monotonically
converges towards Ψj(M), as long as ξ(t) remains in D (and thus in M). Therefore, because
ξ(t) reaches x′ ∈ D′ asymptotically, we have x′ ∈ Ψ(M). This contradicts the assumption
ψ 6= x′, so there does not exist a dim− transition.

Next, we prove sufficiency. Suppose Ψ(M) 6= {} and there exist x ∈ D, x′ ∈ D′,
and ψ ∈ Ψ(M), such that (a) for all i ∈ {1, . . . , n} for which Di ⊆ ∂D′

i, it holds that
(ψi − x′i)(x

′
i − xi) > 0, or (b) it holds that ψ = x′. Consider (a) and assume x′i − xi > 0 for

all x ∈ D, x′ ∈ D′ (the case x′i − xi < 0 goes analogously). As a consequence, xi < x′i < ψi

for all x ∈ D and x′ ∈ D′, and some ψ ∈ Ψ(M). By Lemma 4, for all x ∈ D there
exists a solution ξ(t) ∈ ΞΣ in D, with ξ(0) = x, which monotonically converges towards
ψ. We choose x such that the corresponding solution enters D′ from D, and thus obtain a

transition D
dim−

−→ ∼Ω
D′. In case (b) we find xi < x′i = ψi, and by the same argument there

exists a solution that enters D′ from D. However, in this case the solution only reaches D′

asymptotically, as t→ ∞ (see the proof of necessity).
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