44 research outputs found
Residential Forced Air System Cabinet Leakage and Blower Performance
This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems"
Experimental Evaluation of Installed Cooking Exhaust Fan Performance
The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners
Comparison of Airflow and Acoustic Measurements for Evaluation of Building Air Leakage Paths in a Laboratory Test Apparatus
Unintended Infiltration in buildings is responsible for a significant portion of the global housing stock energy demand. Today, the fan pressurization method, also known as blower-door test, is the most frequently used measurement method to evaluate the airtightness of buildings and determining the total air change rate of a building or a building element. However, the localization and quantification of single leaks in the building envelope remain difficult and time-consuming.
In this paper, an acoustic method is introduced to estimate the leakage size of single leaks in buildings. Sound transmission measurements and measurements of airflow have been conducted in a laboratory test apparatus. The objective of this investigation is to compare acoustic measurements with airflow measurements of leaks under the same boundary conditions. The test apparatus consists of two chambers, which are separated by a test wall. This test wall represents a single characteristic air leakage path in the building envelope. Various types of wall structures with different slit geometries, wall thicknesses and insulation materials have been investigated. The acoustic measurements have been performed with a sound source placed in one chamber and ultrasonic microphones located in both chambers. The results of the acoustic measurements were compared to airflows through the test wall measured using a flow nozzle to provide estimates of the uncertainty in the acoustic approach
Recommended from our members
Performance of Installed Cooking Exhaust Devices
The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) – including exhaust fan/microwave combination appliances – were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance
iTools: A Framework for Classification, Categorization and Integration of Computational Biology Resources
The advancement of the computational biology field hinges on progress in three fundamental directions – the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources–data, software tools and web-services. The iTools design, implementation and resource meta - data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long-term resource management. We demonstrate several applications of iTools as a framework for integrated bioinformatics. iTools and the complete details about its specifications, usage and interfaces are available at the iTools web page http://iTools.ccb.ucla.edu
Recommended from our members
Field Investigation of Duct System Performance in California - Light Commercial Buildings
Recommended from our members
Wildfire Smoke Adjustment Factors for Low-Cost and Professional PM2.5 Monitors with Optical Sensors.
Air quality monitors using low-cost optical PM2.5 sensors can track the dispersion of wildfire smoke; but quantitative hazard assessment requires a smoke-specific adjustment factor (AF). This study determined AFs for three professional-grade devices and four monitors with low-cost sensors based on measurements inside a well-ventilated lab impacted by the 2018 Camp Fire in California (USA). Using the Thermo TEOM-FDMS as reference, AFs of professional monitors were 0.85 for Grimm mini wide-range aerosol spectrometer, 0.25 for TSI DustTrak, and 0.53 for Thermo pDR1500; AFs for low-cost monitors were 0.59 for AirVisual Pro, 0.48 for PurpleAir Indoor, 0.46 for Air Quality Egg, and 0.60 for eLichens Indoor Air Quality Pro Station. We also compared public data from 53 PurpleAir PA-II monitors to 12 nearby regulatory monitoring stations impacted by Camp Fire smoke and devices near stations impacted by the Carr and Mendocino Complex Fires in California and the Pole Creek Fire in Utah. Camp Fire AFs varied by day and location, with median (interquartile) of 0.48 (0.44-0.53). Adjusted PA-II 4-h average data were generally within ±20% of PM2.5 reported by the monitoring stations. Adjustment improved the accuracy of Air Quality Index (AQI) hazard level reporting, e.g., from 14% to 84% correct in Sacramento during the Camp Fire
Recommended from our members
Experimental Evaluation of Installed Cooking Exhaust Fan Performance
The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners
Performance Assessment of U.S. Residential Cooking Exhaust Hoods
This study assessed the performance of seven new residential
cooking
exhaust hoods representing common U.S. designs. Laboratory tests were
conducted to determine fan curves relating airflow to duct static
pressure, sound levels, and exhaust gas capture efficiency for front
and back cooktop burners and the oven. Airflow rate sensitivity to
duct flow resistance was higher for axial fan devices than for centrifugal
fan devices. Pollutant capture efficiency (CE) ranged from <15%
to >98%, varying across hoods and with airflow and burner position
for each hood. CE was higher for back burners relative to front burners,
presumably because most hoods covered only part of the front burners.
Open hoods had higher CE than those with grease screen and metal-covered
bottoms. The device with the highest CE – exceeding 80% for
oven and front burners – had a large, open hood that covered
most of the front burners. The airflow rate for this hood surpassed
the industry-recommended level of 118 L·s<sup>–1</sup> (250 cfm) and produced sound levels too high for normal conversation.
For hoods meeting the sound and fan efficacy criteria for Energy Star,
CE was <30% for front and oven burners