133 research outputs found

    Editorial: observing ocean sound

    Get PDF
    Ocean sound is emerging as a key health indicator of marine ecosystems, increasingly at risk of anthropogenic stressors (Duarte et al., 2021). The full potential of this Essential Ocean Variable (EOV) keeps developing (Tyack, 2018). The science and methods resulting from this EOV address an increasing number of domains, from geophysics to bio- and eco-acoustics. It also offers opportunities to respond to questions as varied as geohazard and marine life occurrence, and provides potentially cost-effective solutions to monitor biodiversity and ecosystems at large.info:eu-repo/semantics/publishedVersio

    From ocean sensors to traceable knowledge by harmonizing ocean observing systems

    Get PDF
    Society is requesting more than ever being better informed on the state and effects of Earth’s changing oceans. This has direct implications on ocean observing systems, including scientific planning and technology. For instance better knowledge implies that data on health, climate and overall dynamics of our oceans have a known level of quality, be up-to-date, be easily discoverable, be easily searchable both in time and space, and be human- and machine-readable in order to generate faster decisions when and where needed. Requirements with respect to spatial regions and scales (seas and ocean basins, from millimeters to hundreds of kilometers), time scope and scales (past, present, future, from microseconds to decades) indeed have direct implications on observing systems’ spatio-temporal sampling capabilities. Possibly high spatial and temporal resolution also means unprecedented amounts of data, communication bandwidth and processing power needs. Technological implications are thus quite substantial and, in this short article, we will try to provide a review of some initiatives of global and local focus that are aiming to respond to at least some of these needs, starting with the application of the Global Earth Observation System of Systems (GEOSS) guidelines to ocean observatories. Then we will address real scenarios in real ocean observing facilities, first with the European Seas Observatory Network and the European Multidisciplinary Seafloor Observation (ESONET-EMSO), then two recently associated Spanish initiatives, the Oceanic Platform of the Canary Islands (PLOCAN) infrastructure and deep sea observatory in the Canary Islands, and the Expandable Seafloor Observatory (OBSEA) shallow water Western-Mediterranean observatory of the Technical University of Catalonia, one of the first real-time ocean observatories implemented with state-of- the-art interoperable concepts, down to the sensor interface.Postprint (published version

    PLOCAN, an Off-shore environmentally sustainable infrastructure to accelerate ocean research, development and innovation at increasing depths.

    Get PDF
    The Canary Islands Oceanic Platform (PLOCAN) is a public infrastructure for research, development and innovation in the fields of ocean science and technology at increasing depths. Located East of Gran Canaria Island (Canary Islands, Spain), PLOCAN will provide rapid access to great depths at short distance from the shore, accelerating research and the generation of water column and deep-ocean knowledge. Specifically, PLOCAN will host a permanent deep-sea observatory, be a test-bed for innovative technologies, form specialists and provide training in the field and be a national base of manned and unmanned submersibles. PLOCAN’s vision is focused on generation and exchange of science and innovations between the academic and the socio-economic spheres. PLOCAN will be a fully instrumented gate to the deep ocean, an efficient and cost-effective solution to test products and processes , and cluster private and public partnerships to face undersea challenges. Two years ahead of the planned official opening and start of operations, the academic world, entrepreneurs and corporations have already started to submit proposals to be included in the science and technology agenda. Activities will be essentially multidisciplinary, ranging from renewable energies, aquaculture, ocean observing fixed systems and submersibles, to biosciences and emerging technologies such as new materials and nanotechnologies. PLOCAN’s vision is to be a true accelerator for marine and deep-sea research and development, with optimal conditions and full environmental guaranteesPeer Reviewe

    Sensor interoperability in the framework of ocean observatories

    Get PDF

    Applying OGC sensor web enablement to ocean observing systems

    Get PDF
    The complexity of marine installations for ocean observing systems has grown significantly in recent years. In a network consisting of tens, hundreds or thousands of marine instruments, manual configuration and integration becomes very challenging. Simplifying the integration process in existing or newly established observing systems would benefit system operators and is important for the broader application of different sensors. This article presents an approach for the automatic configuration and integration of sensors into an interoperable Sensor Web infrastructure. First, the sensor communication model, based on OGC's SensorML standard, is utilized. It serves as a generic driver mechanism since it enables the declarative and detailed description of a sensor's protocol. Finally, we present a data acquisition architecture based on the OGC PUCK protocol that enables storage and retrieval of the SensorML document from the sensor itself, and automatic integration of sensors into an interoperable Sensor Web infrastructure. Our approach adopts Efficient XML Interchange (EXI) as alternative serialization form of XML or JSON. It solves the bandwidth problem of XML and JSON.Peer ReviewedPostprint (author's final draft

    Frecuencia cardíaca en tiempo real y por telemetría para aplicaciones acuáticas

    Get PDF
    El registro de la frecuencia cardíaca (FC) es un parámetro muy útil para el control y la planificación del entrenamiento deportivo. Existen diversos sistemas de cardiotacómetros miniatura en el mercado diseñados y fabricados para su uso en actividades físico-deportivas. Todos ellos se colocan en el pecho mediante una cinta elástica, que proporciona una fijación insuficiente para la natación, especialmente en los virajes, ello obliga a utilizar cinta adhesiva u otros sistemas de fijación "cruentos". El sistema desarrollado en el Instituto de Biomecánica de Valencia (IBV) permite registrar y enviar telemétricamente la fre-cuencia cardíaca a un ordenador personal donde se puede mostrar en tiempo real y/o ser almacenada para su posterior análisis. De esta manera, el entrenador puede controlar la intensidad de un entreno y transmitir un feedback casi inmediato al nadador. El sistema consiste en una pinza colocada en el lóbulo de la oreja con un emisor de luz roja (LED) y una resistencia dependiente de la luz (LDR). La luz roja pasa a través del lóbulo y es recibida por el LDR. El fun-damento del sistema consiste en que la atenuación de la luz roja en el lóbulo de la oreja está asociada con cambios en el contenido de sangre oxigenada, método denominado "oximetría". Para el sistema de telemetría se utiliza un modulador de señal basado en un oscilador controlado por tensión (VCO) y un circuito comercial híbrido para la transmisión. El cálculo de la frecuencia cardíaca en tiempo real es posible gracias a la utilización de un filtro digital y al desarrollo de un algoritmo para reducir el ruido

    Freqüència cardíaca en temps real i per telemetria per a aplicacions aquàtiques

    Get PDF
    El registre de la freqüència cardíaca (FC) és un paràmetre molt útil per al control i la planificació de l'entrenament esportiu. AI mercat hi ha diversos sistemes de cardiotacòmetres miniatura dissenyats i fabricats per a ús en activitats fisicoesportives. Tots es col·loquen al pit mitjançant una cinta elàstica, que proporciona una fixació insuficient per a la natació, especialment en els viratges, això obliga a utilitzar cinta adhesiva o altres sistemes de fixació "cruents". El sistema desenvolupat a l'Institut de Biomecànica de València (IBV) permet registrar enviar telemètricament la freqüència cardíaca a un ordinador personal on es pot mostrar en temps real i/o ser emmagatzemada per a posterior anàlisi. D'aquesta manera, l'entrenador pot controlar la intensitat d'un entrenament i transmetre un feedback gairebé immediat al nedador. El sistema consisteix en una pinça col·locada al lòbul de l'orella amb un emissor de llum vermella (LED) i una resistència depenent de la llum (LDR). La llum vermella passa a través del lòbul i és rebuda pel LDR. El fonament del sistema consisteix que l'atenuació de la Ilum vermella en el lòbul de l'orella està associada amb canvis en el contingut de la sang oxigenada, mètode anomenat "oximetria". Per al sistema de telemetria es fa servir un modulador de senyal basat en un oscil·lador controlat per tensió (VCO) i un circuit comercial híbrid per a la transmissió. El càlcul de la freqüència cardíaca en temps real és possible gràcies a la utilització d'un filtre digital i al desenvolupament d'un algoritme per reduir el soroll
    corecore