70 research outputs found

    Same donor laparoscopic liver and kidney procurement for sequential living donor liver-kidney transplantation in primary hyperoxaluria type i

    Get PDF
    Background: Sequential liver-kidney transplantation (SeqLKT) from the same living donor has shown excellent results in children with primary hyperoxaluria type 1 (PH1), yet its experience is limited due to the invasiveness of two major procedures for liver-kidney procurement in a single donor. Despite laparoscopic nephrectomy and hepatic left lateral sectionectomy (LLS) being considered standard procedures in living donation, the sequential use of the two laparoscopic approaches in the same living donor has never been reported. Methods: Herein, we present the first two case series of laparoscopic liver-kidney procurement in the same living donor for SeqLKT in children with PH1 and review of the current literature on this topic. Results: In the first case, a 15-month-old boy received a SeqLKT from his 32-year-old mother, who underwent a laparoscopic LLS and, after 8 months, a laparoscopic left nephrectomy. In the second case, a 34-month-old boy received a SeqLKT from his 40-year-old father who underwent laparoscopic LLS followed by hand-assisted right nephrectomy after 4 months. Both donors had uneventful postoperative courses and were discharged within 5 days from each surgery. The first recipient had no complication; the second child after liver transplantation developed a partial thrombosis of the inferior vena cava, which did not preclude the sequential kidney transplantation. After 12 months, donors and recipients displayed normal liver and renal functions. Conclusions: Sequential laparoscopic liver-kidney procurement in the same living donor is safe and feasible, and might be considered as a possible strategy to promote SeqLKT in children with PH1 from the same living donor

    Post-transplant recurrence of steroid resistant nephrotic syndrome in children: the Italian experience

    Get PDF
    Background: Steroid resistant nephrotic syndrome (SRNS) is a frequent cause of end stage renal disease in children and post-transplant disease recurrence is a major cause of graft loss. Methods: We identified all children with SRNS who underwent renal transplantation in Italy, between 2005 and 2017. Data were retrospectively collected for the presence of a causative gene mutation, sex, histology, duration of pre-transplant dialysis, age at onset and transplant, HLA matching, recurrence, therapy for recurrence, and graft survival. Results: 101 patients underwent a first and 22 a second renal transplant. After a median follow-up of 58.5 months, the disease recurred on the first renal transplant in 53.3% of patients with a non-genetic and none with a genetic SRNS. Age at transplant > 9 years and the presence of at least one HLA-AB match were independent risk factors for recurrence. Duration of dialysis was longer in children with relapse, but did not reach statistical significance. Overall, 24% of patients lost the first graft, with recurrence representing the commonest cause. Among 22 patients who underwent a second transplant, 5 suffered of SRNS recurrence. SRNS relapsed in 5/9 (55%) patients with disease recurrence in their first transplant and 2 of them lost the second graft. Conclusions: Absence of a causative mutation represents the major risk factor for post-transplant recurrence in children with SRNS, while transplant can be curative in genetic SRNS. A prolonged time spent on dialysis before transplantation has no protective effect on the risk of relapse and should not be encouraged. Retransplantation represents a second chance after graft loss for recurrence

    Life-saving vascular access after combined liver and kidney transplantation: A challenging access to the right atrium

    Get PDF
    Exhaustion of vascular accesses is a major complication in patients undergoing hemodialysis, especially in pediatric setting. We report the case of a boy treated for loss of hemodialysis access after a combined liver-kidney transplantation and transient renal dysfunction. An interventional dilatation of calcific superior vena cava allowed to insert a stable central venous line for dialysis until full graft recovery. Careful management of central lines allows to spare the main vessels and reduces the need for unusual accesses

    Nephrolithiasis related to inborn metabolic diseases

    Get PDF
    Nephrolithiasis associated with inborn metabolic diseases is a very rare condition with some common characteristics: early onset of symptoms, family history, associated tubular impairment, bilateral, multiple and recurrent stones, and association with nephrocalcinosis. The prognosis of such diseases may lead to life threatening conditions, not only because of unabated kidney damage but also because of progressive extra-renal involvement, either in a systemic form (e.g. primary hyperoxaluria type 1, requiring combined liver and kidney transplantation), or in a neurological form (Lesch–Nyhan syndrome leading to auto-mutilation and disability, phosphoribosyl pyrophosphate synthetase superactivity, which is associated with mental retardation). Patients with other inborn metabolic diseases present only with recurrent stone formation, such as cystinuria, adenine phosphoribosyl-transferase deficiency, xanthine deficiency. Finally, nephrolithiasis may be secondarily part of some other metabolic diseases, such as glycogen storage disease type 1 or inborn errors of metabolism leading to Fanconi syndrome (nephropathic cystinosis, tyrosinaemia type 1, fructose intolerance, Wilson disease, respiratory chain disorders, etc.). The diagnosis is based on highly specific investigations, including crystal identification, biochemical analyses and DNA study. The treatment of nephrolithiasis requires hydration as well as specific measures. Compliance is a major issue regarding the progression of renal damage, but the overall outcome mainly depends on extra-renal involvement in relation to the metabolic defect

    Associating mutations causing cystinuria with disease severity with the aim of providing precision medicine

    Get PDF
    Background Cystinuria is an inherited disease that results in the formation of cystine stones in the kidney, which can have serious health complications. Two genes (SLC7A9 and SLC3A1) that form an amino acid transporter are known to be responsible for the disease. Variants that cause the disease disrupt amino acid transport across the cell membrane, leading to the build-up of relatively insoluble cystine, resulting in formation of stones. Assessing the effects of each mutation is critical in order to provide tailored treatment options for patients. We used various computational methods to assess the effects of cystinuria associated mutations, utilising information on protein function, evolutionary conservation and natural population variation of the two genes. We also analysed the ability of some methods to predict the phenotypes of individuals with cystinuria, based on their genotypes, and compared this to clinical data. Results Using a literature search, we collated a set of 94 SLC3A1 and 58 SLC7A9 point mutations known to be associated with cystinuria. There are differences in sequence location, evolutionary conservation, allele frequency, and predicted effect on protein function between these mutations and other genetic variants of the same genes that occur in a large population. Structural analysis considered how these mutations might lead to cystinuria. For SLC7A9, many mutations swap hydrophobic amino acids for charged amino acids or vice versa, while others affect known functional sites. For SLC3A1, functional information is currently insufficient to make confident predictions but mutations often result in the loss of hydrogen bonds and largely appear to affect protein stability. Finally, we showed that computational predictions of mutation severity were significantly correlated with the disease phenotypes of patients from a clinical study, despite different methods disagreeing for some of their predictions. Conclusions The results of this study are promising and highlight the areas of research which must now be pursued to better understand how mutations in SLC3A1 and SLC7A9 cause cystinuria. The application of our approach to a larger data set is essential, but we have shown that computational methods could play an important role in designing more effective personalised treatment options for patients with cystinuria

    Associating mutations causing cystinuria with disease severity with the aim of providing precision medicine

    Get PDF
    Background Cystinuria is an inherited disease that results in the formation of cystine stones in the kidney, which can have serious health complications. Two genes (SLC7A9 and SLC3A1) that form an amino acid transporter are known to be responsible for the disease. Variants that cause the disease disrupt amino acid transport across the cell membrane, leading to the build-up of relatively insoluble cystine, resulting in formation of stones. Assessing the effects of each mutation is critical in order to provide tailored treatment options for patients. We used various computational methods to assess the effects of cystinuria associated mutations, utilising information on protein function, evolutionary conservation and natural population variation of the two genes. We also analysed the ability of some methods to predict the phenotypes of individuals with cystinuria, based on their genotypes, and compared this to clinical data. Results Using a literature search, we collated a set of 94 SLC3A1 and 58 SLC7A9 point mutations known to be associated with cystinuria. There are differences in sequence location, evolutionary conservation, allele frequency, and predicted effect on protein function between these mutations and other genetic variants of the same genes that occur in a large population. Structural analysis considered how these mutations might lead to cystinuria. For SLC7A9, many mutations swap hydrophobic amino acids for charged amino acids or vice versa, while others affect known functional sites. For SLC3A1, functional information is currently insufficient to make confident predictions but mutations often result in the loss of hydrogen bonds and largely appear to affect protein stability. Finally, we showed that computational predictions of mutation severity were significantly correlated with the disease phenotypes of patients from a clinical study, despite different methods disagreeing for some of their predictions. Conclusions The results of this study are promising and highlight the areas of research which must now be pursued to better understand how mutations in SLC3A1 and SLC7A9 cause cystinuria. The application of our approach to a larger data set is essential, but we have shown that computational methods could play an important role in designing more effective personalised treatment options for patients with cystinuria
    • …
    corecore