1,034 research outputs found
Systematic computation of crystal field multiplets for X-ray core spectroscopies
We present a new approach to computing multiplets for core spectroscopies,
whereby the crystal field is constructed explicitly from the positions and
charges of surrounding atoms. The simplicity of the input allows the
consideration of crystal fields of any symmetry, and in particular facilitates
the study of spectroscopic effects arising from low symmetry environments. The
interplay between polarization directions and crystal field can also be
conveniently investigated. The determination of the multiplets proceeds from a
Dirac density functional atomic calculation, followed by the exact
diagonalization of the Coulomb, spin-orbit and crystal field interactions for
the electrons in the open shells. The eigenstates are then used to simulate
X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering spectra.
In examples ranging from high symmetry down to low symmetry environment,
comparisons with experiments are done with unadjusted model parameters as well
as with semi-empirically optimized ones. Furthermore, predictions for the RIXS
of low-temperature MnO and for Dy in a molecular complex are proposed.Comment: Accepted for publication in Phys. Rev.
Observation of plaquette fluctuations in the spin-1/2 honeycomb lattice
Quantum spin liquids are materials that feature quantum entangled spin
correlations and avoid magnetic long-range order at T = 0 K. Particularly
interesting are two-dimensional honeycomb spin lattices where a plethora of
exotic quantum spin liquids have been predicted. Here, we experimentally study
an effective S=1/2 Heisenberg honeycomb lattice with competing nearest and
next-nearest neighbor interactions. We demonstrate that YbBr avoids order
down to at least T=100 mK and features a dynamic spin-spin correlation function
with broad continuum scattering typical of quantum spin liquids near a quantum
critical point. The continuum in the spin spectrum is consistent with plaquette
type fluctuations predicted by theory. Our study is the experimental
demonstration that strong quantum fluctuations can exist on the honeycomb
lattice even in the absence of Kitaev-type interactions, and opens a new
perspective on quantum spin liquids.Comment: 32 pages, 7 Figure
Evolution of the interfacial structure of LaAlO3 on SrTiO3
The evolution of the atomic structure of LaAlO3 grown on SrTiO3 was
investigated using surface x-ray diffraction in conjunction with
model-independent, phase-retrieval algorithms between two and five monolayers
film thickness. A depolarizing buckling is observed between cation and oxygen
positions in response to the electric field of polar LaAlO3, which decreases
with increasing film thickness. We explain this in terms of competition between
elastic strain energy, electrostatic energy, and electronic reconstructions.
The findings are qualitatively reproduced by density-functional theory
calculations. Significant cationic intermixing across the interface extends
approximately three monolayers for all film thicknesses. The interfaces of
films thinner than four monolayers therefore extend to the surface, which might
affect conductivity
Doping Dependence of Collective Spin and Orbital Excitations in Spin 1 Quantum Antiferromagnet LaSrNiO Observed by X-rays
We report the first empirical demonstration that resonant inelastic x-ray
scattering (RIXS) is sensitive to \emph{collective} magnetic excitations in
systems by probing the Ni -edge of LaSrNiO (). The magnetic excitation peak is asymmetric, indicating the
presence of single and multi spin-flip excitations. As the hole doping level is
increased, the zone boundary magnon energy is suppressed at a much larger rate
than that in hole doped cuprates. Based on the analysis of the orbital and
charge excitations observed by RIXS, we argue that this difference is related
to the orbital character of the doped holes in these two families. This work
establishes RIXS as a probe of fundamental magnetic interactions in nickelates
opening the way towards studies of heterostructures and ultra-fast pump-probe
experiments.Comment: 8 pages, 4 figures, see ancillary files for the supplemental materia
Evidence for SrHo2O4 and SrDy2O4 as model J1-J2 zig-zag chain materials
Neutron diffraction and inelastic spectroscopy is used to characterize the
magnetic Hamiltonian of SrHo2O4 and SrDy2O4. Through a detailed computation of
the crystal-field levels we find site- dependent anisotropic single-ion
magnetism in both materials and diffraction measurements show the presence of
strong one-dimensional spin correlations. Our measurements indicate that
competing interactions of the zig-zag chain, combined with frustrated
interchain interactions, play a crucial role in stabilizing spin-liquid type
correlations in this series.Comment: 5 pages, 5 figure
A Nonzero Gap Two-Dimensional Carbon Allotrope from Porous Graphene
Graphene is considered one of the most promising materials for future
electronic. However, in its pristine form graphene is a gapless material, which
imposes limitations to its use in some electronic applications. In order to
solve this problem many approaches have been tried, such as, physical and
chemical functionalizations. These processes compromise some of the desirable
graphene properties. In this work, based on ab initio quantum molecular
dynamics, we showed that a two-dimensional carbon allotrope, named biphenylene
carbon (BPC) can be obtained from selective dehydrogenation of porous graphene.
BPC presents a nonzero bandgap and well-delocalized frontier orbitals.
Synthetic routes to BPC are also addressed.Comment: Published on J. Phys. Chem. C, 2012, 116 (23), pp 12810-1281
Crystal structure and phonon softening in Ca3Ir4Sn13
We investigated the crystal structure and lattice excitations of the ternary
intermetallic stannide Ca3Ir4Sn13 using neutron and x-ray scattering
techniques. For T > T* ~ 38 K the x-ray diffraction data can be satisfactorily
refined using the space group Pm-3n. Below T* the crystal structure is
modulated with a propagation vector of q = (1/2, 1/2, 0). This may arise from a
merohedral twinning in which three tetragonal domains overlap to mimic a higher
symmetry, or from a doubling of the cubic unit cell. Neutron diffraction and
neutron spectroscopy results show that the structural transition at T* is of a
second-order, and that it is well described by mean-field theory. Inelastic
neutron scattering data point towards a displacive structural transition at T*
arising from the softening of a low-energy phonon mode with an energy gap of
Delta(120 K) = 1.05 meV. Using density functional theory the soft phonon mode
is identified as a 'breathing' mode of the Sn12 icosahedra and is consistent
with the thermal ellipsoids of the Sn2 atoms found by single crystal
diffraction data
Origin of anomalously long interatomic distances in suspended gold chains
The discovery of long bonds in gold atom chains has represented a challenge
for physical interpretation. In fact, interatomic distances frequently attain
3.0-3.6 A values and, distances as large as 5.0 A may be seldom observed. Here,
we studied gold chains by transmission electron microscopy and performed
theoretical calculations using cluster ab initio density functional formalism.
We show that the insertion of two carbon atoms is required to account for the
longest bonds, while distances above 3 A may be due to a mixture of clean and
one C atom contaminated bonds.Comment: 4 pages, 4 Postscript figures, to be published in Physical Review
Letter
Influence of the Fermi Surface Morphology on the Magnetic Field-Driven Vortex Lattice Structure Transitions in YBaCuO0, 0.15
We report small-angle neutron scattering measurements of the vortex lattice
(VL) structure in single crystals of the lightly underdoped cuprate
superconductor YBa2Cu3O6.85. At 2 K, and for fields of up to 16 T applied
parallel to the crystal c-axis, we observe a sequence of field-driven and
first-order transitions between different VL structures. By rotating the field
away from the c-axis, we observe each structure transition to shift to either
higher or lower field dependent on whether the field is rotated towards the
[100] or [010] direction. We use this latter observation to argue that the
Fermi surface morphology must play a key role in the mechanisms that drive the
VL structure transitions. Furthermore, we show this interpretation is
compatible with analogous results obtained previously on lightly overdoped
YBa2Cu3O7. In that material, it has long-been suggested that the high field VL
structure transition is driven by the nodal gap anisotropy. In contrast, the
results and discussion presented here bring into question the role, if any, of
a nodal gap anisotropy on the VL structure transitions in both YBa2Cu3O6.85 and
YBa2Cu3O7
Evidence for coupling between collective state and phonons in two-dimensional charge-density-wave systems
We report on a Raman scattering investigation of the charge-density-wave
(CDW), quasi two-dimensional rare-earth tri-tellurides Te (= La, Ce,
Pr, Nd, Sm, Gd and Dy) at ambient pressure, and of LaTe and CeTe under
externally applied pressure. The observed phonon peaks can be ascribed to the
Raman active modes for both the undistorted as well as the distorted lattice in
the CDW state by means of a first principles calculation. The latter also
predicts the Kohn anomaly in the phonon dispersion, driving the CDW transition.
The integrated intensity of the two most prominent modes scales as a
characteristic power of the CDW-gap amplitude upon compressing the lattice,
which provides clear evidence for the tight coupling between the CDW condensate
and the vibrational modes
- …