68 research outputs found

    A Study Of Retention Of Percentage

    Get PDF
    The problem of this thesis was to determine by means of a test the retention of the fundamentals of percentage as shown by be ginning eighth grade pupils, who were taught percentage the previous year in the seventh grade. The fundamentals of percentage are here considered as the changing of percents to decimal fractions or common fractions, the reverse procedures, and the three types of problems arising from the relation, base times rate equals part. These quantities, base, rate, and part, are represented in the example, 300 X 12% = 36, respectively. Because of the inherent relationship of decimal fractions and percent, many of their common uses are overlapping. Percentage has been taught as something distinct and separate from the decimal fraction. »The introduction of percentage was due to the need of a common denominator in comparing numbers, especially, in the form of fractions or ratios

    RNA-Sequencing data supports the existence of novel VEGFA splicing events but not of VEGFAxxxb isoforms

    Get PDF
    AbstractVascular endothelial growth factor (VEGFA), a pivotal regulator of angiogenesis and valuable therapeutic target, is characterised by alternative splicing which generates three principal isoforms, VEGFA121, VEGFA165 and VEGFA189. A second set of anti-angiogenic isoforms termed VEGFAxxxb that utilise an alternative splice site in the final exon have been widely reported, with mRNA detection based principally upon RT-PCR assays. We sought confirmation of the existence of the VEGFAxxxb isoforms within the abundant RNA sequencing data available publicly. Whilst sequences derived specifically from each of the canonical VEGFA isoforms were present in many tissues, there were no sequences derived from VEGFAxxxb isoforms. Sequencing of approximately 50,000 RT-PCR products spanning the exon 7–8 junction in 10 tissues did not identify any VEGFAxxxb transcripts. The absence or extremely low expression of these transcripts in vivo indicates that VEGFAxxxb isoforms are unlikely to play a role in normal physiology. Our analyses also revealed multiple novel splicing events supported by more reads than previously reported for VEGFA145 and VEGFA148 isoforms, including three from novel first exons consistent with existing transcription start site data. These novel VEGFA isoforms may play significant roles in specific cell types.</jats:p

    Prediction of microRNAs affecting mRNA expression during retinal development

    Get PDF
    Background: MicroRNAs (miRNAs) are small RNA molecules (similar to 22 nucleotides) which have been shown to play an important role both in development and in maintenance of adult tissue. Conditional inactivation of miRNAs in the eye causes loss of visual function and progressive retinal degeneration. In addition to inhibiting translation, miRNAs can mediate degradation of targeted mRNAs. We have previously shown that candidate miRNAs affecting transcript levels in a tissue can be deduced from mRNA microarray expression profiles. The purpose of this study was to predict miRNAs which affect mRNA levels in developing and adult retinal tissue and to confirm their expression.Results: Microarray expression data from ciliary epithelial retinal stem cells (CE-RSCs), developing and adult mouse retina were generated or downloaded from public repositories. Analysis of gene expression profiles detected the effects of multiple miRNAs in CE-RSCs and retina. The expression of 20 selected miRNAs was confirmed by RT-PCR and the cellular distribution of representative candidates analyzed by in situ hybridization. The expression levels of miRNAs correlated with the significance of their predicted effects upon mRNA expression. Highly expressed miRNAs included miR-124, miR-125a, miR-125b, miR-204 and miR-9. Over-expression of three miRNAs with significant predicted effects upon global mRNA levels resulted in a decrease in mRNA expression of five out of six individual predicted target genes assayed.Conclusions: This study has detected the effect of miRNAs upon mRNA expression in immature and adult retinal tissue and cells. The validity of these observations is supported by the experimental confirmation of candidate miRNA expression and the regulation of predicted target genes following miRNA over-expression. Identified miRNAs are likely to be important in retinal development and function. Misregulation of these miRNAs might contribute to retinal degeneration and disease. Conversely, manipulation of their expression could potentially be used as a therapeutic tool in the future

    Genome-wide profiling of methylation identifies novel targets with aberrant hyper-methylation and reduced expression in low-risk myelodysplastic syndromes

    Get PDF
    Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases. © 2013 Macmillan Publishers Limited All rights reserved

    Two Secreted Proteoglycans, Activators of Urothelial Cell–Cell Adhesion, Negatively Contribute to Bladder Cancer Initiation and Progression

    Get PDF
    Osteomodulin (OMD) and proline/arginine-rich end leucine repeat protein (PRELP) are secreted extracellular matrix proteins belonging to the small leucine-rich proteoglycans family. We found that OMD and PRELP were specifically expressed in umbrella cells in bladder epithelia, and their expression levels were dramatically downregulated in all bladder cancers from very early stages and various epithelial cancers. Our in vitro studies including gene expression profiling using bladder cancer cell lines revealed that OMD or PRELP application suppressed the cancer progression by inhibiting TGF-β and EGF pathways, which reversed epithelial–mesenchymal transition (EMT), activated cell–cell adhesion, and inhibited various oncogenic pathways. Furthermore, the overexpression of OMD in bladder cancer cells strongly inhibited the anchorage-independent growth and tumorigenicity in mouse xenograft studies. On the other hand, we found that in the bladder epithelia, the knockout mice of OMD and/or PRELP gene caused partial EMT and a loss of tight junctions of the umbrella cells and resulted in formation of a bladder carcinoma in situ-like structure by spontaneous breakdowns of the umbrella cell layer. Furthermore, the ontological analysis of the expression profiling of an OMD knockout mouse bladder demonstrated very high similarity with those obtained from human bladder cancers. Our data indicate that OMD and PRELP are endogenous inhibitors of cancer initiation and progression by controlling EMT. OMD and/or PRELP may have potential for the treatment of bladder cancer

    Two Secreted Proteoglycans, Activators of Urothelial Cell-Cell Adhesion, Negatively Contribute to Bladder Cancer Initiation and Progression.

    Get PDF
    Osteomodulin (OMD) and proline/arginine-rich end leucine repeat protein (PRELP) are secreted extracellular matrix proteins belonging to the small leucine-rich proteoglycans family. We found that OMD and PRELP were specifically expressed in umbrella cells in bladder epithelia, and their expression levels were dramatically downregulated in all bladder cancers from very early stages and various epithelial cancers. Our in vitro studies including gene expression profiling using bladder cancer cell lines revealed that OMD or PRELP application suppressed the cancer progression by inhibiting TGF-β and EGF pathways, which reversed epithelial-mesenchymal transition (EMT), activated cell-cell adhesion, and inhibited various oncogenic pathways. Furthermore, the overexpression of OMD in bladder cancer cells strongly inhibited the anchorage-independent growth and tumorigenicity in mouse xenograft studies. On the other hand, we found that in the bladder epithelia, the knockout mice of OMD and/or PRELP gene caused partial EMT and a loss of tight junctions of the umbrella cells and resulted in formation of a bladder carcinoma in situ-like structure by spontaneous breakdowns of the umbrella cell layer. Furthermore, the ontological analysis of the expression profiling of an OMD knockout mouse bladder demonstrated very high similarity with those obtained from human bladder cancers. Our data indicate that OMD and PRELP are endogenous inhibitors of cancer initiation and progression by controlling EMT. OMD and/or PRELP may have potential for the treatment of bladder cancer
    corecore